Preprint has been published in a journal as an article
Preprint / Version 1

Sentiment Classification and the Relationship of Textual Characteristics to Tweet Engagement Levels on Shopee Services

Klasifikasi Sentimen Dan Hubungan Karakteristik Teks Terhadap Tingkat Engagement Tweet Pada Layanan Shopee

##article.authors##

DOI:

https://doi.org/10.21070/ups.9982

Keywords:

Analysis Sentiment, Engagement, Naive Bayes, SVM, FP-Growth, Twitter

Abstract

Social media Twitter (X) is widely used by users to express opinions, complaints, and experiences related to e-commerce services such as Shopee. The high volume of conversations creates the need for automated analysis to understand user sentiment and engagement behavior. This study focuses on classifying sentiment in Shopee-related tweets and examining the relationship between textual characteristics and engagement levels. Sentiment classification models were developed using Naïve Bayes and Support Vector Machine (SVM) algorithms with an 80:20 train–test data split. Engagement analysis was supported by FP-Growth, WordCloud, and Crosstab techniques. The results show that both models achieved an accuracy of 68%, with SVM demonstrating more balanced performance across sentiment classes. FP-Growth analysis revealed dominant patterns in positive sentiment with low engagement, while high engagement showed no strong association patterns. These findings suggest that engagement is influenced not only by sentiment, but also by external factors and account characteristics.

Downloads

Download data is not yet available.

References

A. N. Puspitasari, Y. Findawati, and Y. Rahmawati, “ANALISIS SENTIMEN TWEET PENGGUNA E-COMMERCE DENGAN MENGGUNAKAN METODE KLASIFIKASI NAIVE BAYES,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1123–1132, Aug. 2024, doi: 10.29100/jipi.v9i3.4939.

P. S. Hutapea and W. Maharani, “Sentiment Analysis on Twitter Social Media towards Shopee E-Commerce through Support Vector Machine (SVM) Method,” JINAV: Journal of Information and Visualization, vol. 4, no. 1, pp. 7–17, Jan. 2023, doi: 10.35877/454ri.jinav1504.

A. Syah, F. Nurdiyansyah, and A. Y. Rahman, “ANALISIS SENTIMEN APLIKASI SHOPEE, TOKOPEDIA, LAZADA DAN BLIBLI MENGGUNAKAN LEKSIKON DAN RANDOM FOREST,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3s1.5155.

R. Rameez, H. A. Rahmani, and E. Yilmaz, “ViralBERT: A User Focused BERT-Based Approach to Virality Prediction,” in UMAP2022 - Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, Association for Computing Machinery, Inc, Jul. 2022, pp. 85–89. doi: 10.1145/3511047.3536415.

E. Saquete, J. Zubcoff, Y. Gutiérrez, P. Martínez-Barco, and J. Fernández, “Why are some social-media contents more popular than others? Opinion and association rules mining applied to virality patterns discovery,” Expert Syst. Appl., vol. 197, Jul. 2022, doi: 10.1016/j.eswa.2022.116676.

N. Al Maeni, N. Suarna, and W. Prihartono, “ANALISIS SENTIMEN PENGGUNA SHOPEE BERDASARKAN DATA TWEET DARI TWITTER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,” 2024.

F. S. Mufidah, S. Winarno, F. Alzami, E. D. Udayanti, and R. R. Sani, “Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier,” JOINS (Journal of Information System), vol. 7, no. 1, pp. 14–25, May 2022, doi: 10.33633/joins.v7i1.5883.

S. Jaffali, “Analyzing the Impact of Emotional Content in Tweets on User Engagement and Online Behavior,” 2025.

B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

I. Syahrohim, S. D. Saputra, R. W. Saputra, V. H. Pranatawijaya, and R. Priskila, “PERBANDINGAN ANALISIS SENTIMEN SETELAH PILPRES 2024 DI TWITTER MENGGUNAKAN ALGORITMA MACHINE LEARNING,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4249.

Z. Purwanti, P. Studi Sistem Informasi, S. Tinggi Ilmu Komputer Cipta Karya Informatika, K. Jakarta Timur, and D. Khusus Ibukota Jakarta, “Pemodelan Text Mining untuk Analisis Sentimen Terhadap Program Makan Siang Gratis di Media Sosial X Menggunakan Algoritma Support Vector Machine (SVM),” 2024. [Online]. Available: https://journal.stmiki.ac.id

M. I. Prayugah and N. Ariyanti, “ANALISIS SENTIMEN PUBLIK PADA PEMERINTAH DALAM SERANGAN RANSOMWARE DENGAN PENDEKATAN SMOTE,” 2025. Accessed: Jul. 08, 2025. [Online]. Available: https://archive.umsida.ac.id/index.php/archive/preprint/view/6971

Zaenal and Ratna I, “Sentiment Analysis of OYO App Reviews Using the Support Vector Machine Algorithm Analisis Sentimen terhadap Ulasan Aplikasi OYO menggunakan Algoritma Support Vector Machine Zaenal, Ika Ratna Indra Astutik,” 2022. Accessed: Jul. 08, 2025. [Online]. Available: https://archive.umsida.ac.id/index.php/archive/preprint/view/424/version/416

Y. Ma, “Construction and Data Analysis of a New Media Content Popularity Prediction Model Based on Naive Bayes Algorithm,” in Procedia Computer Science, Elsevier B.V., 2025, pp. 294–302. doi: 10.1016/j.procs.2025.04.207.

F. Syah Zikri and M. Ikhsan, “The Comparison Between The Apriori Algorithm And The FP-Growth Algorithm In Determining Frequent Pattern,” INOVTEK Polbeng - Seri Informatika, vol. 10, no. 2, pp. 615–625, Apr. 2025, doi: 10.35314/s1yanj03.

A. N. Samsi, Y. Findawati, I. A. Kautsar, and U. M. Sidoarjo, “SNESTIK Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika Analisa Sentimen Mahasiswa Terhadap Minat Berorganisasi Dengan Metode Naïve Bayes,” p. 171, doi: 10.31284/p.snestik.2022.2712.

Posted

2026-01-30