DOI of the published article https://doi.org/10.35145/joisie.v8i2.4764
Analysis of Public Sentiment on Government in Ransomware Attacks Using a Smote Approach
Analisis Sentimen Publik pada Pemerintah dalam Serangan Ransomware dengan Pendekatan Smote
DOI:
https://doi.org/10.21070/ups.6971Keywords:
ransomware, support vector machine, random forest, naïve bayes, SMOTEAbstract
The ransomware attack on Indonesia's national data center has become a widely discussed topic in society. YouTube has become the main platform for disseminating information and giving people opinions. This research aims to identify public sentiment regarding the government's handling of ransomware attacks through analysis of comments on the CNN Indonesia and MetroTV YouTube channels. Data was collected using web scraping techniques and entered into a classification model with three labels positive, neutral and negative. The three machine learning models that will be used are SVM, Random Forest, and Naïve Bayes, with two test scenarios, using Synthetic Minority Over-sampling Technique (SMOTE) and without SMOTE. Applying SMOTE increases model accuracy, in SVM which reaches 96%. The research results show that the comments express negative sentiments towards the government's. This research will provide an understanding of public perceptions of cyber security issues in Indonesia and the effectiveness of SMOTE in sentiment analysis.
Downloads
References
A. A. Ningtyas, A. Solichin, and R. Pradana, “ANALISIS SENTIMEN KOMENTAR YOUTUBE TENTANG PREDIKSI RESESI EKONOMI TAHUN 2023 MENGGUNAKAN ALGORITME NAÏVE BAYES,” 2023.
Chely Aulia Misrun, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen komentar youtube terhadap Anies Baswedan sebagai bakal calon presiden 2024 menggunakan metode naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 207–215, Apr. 2023, doi: 10.37859/coscitech.v4i1.4790.
S. Faira Huwaida, R. Kusumawati, B. Isnaini, P. Korespondensi, and R. Artikel, “Analisis sentimen komentar youtube terhadap pemindahan ibu kota negara menggunakan metode Naïve Bayes,” Jambura J. Informatics, vol. 6, no. 1, pp. 26–39, 2024, doi: 10.37905/jji.v6i1.24718.
E. Darwisah Harahap and R. Kurniawan, “Analisis Sentimen Komentar Terhadap Kebijakan Pemerintah Mengenai Tabungan Perumahan Rakyat (TAPERA) Pada Aplikasi X Menggunakan Metode Naïve Bayes,” 2024.
E. Indrayuni and A. Nurhadi, “OPTIMASI NAIVE BAYES BERBASIS PSO UNTUK ANALISA SENTIMEN PERKEMBANGAN ARTIFICIAL INTELLIGENCE DI TWITTER,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 65–70, Aug. 2023, doi: 10.33480/inti.v18i1.4282.
M. F. Naufal, T. Arifin, and H. Wirjawan, “Analisis Perbandingan Tingkat Performa Algoritma SVM, Random Forest, dan Naïve Bayes untuk Klasifikasi Cyberbullying pada Media Sosial,” 2023, vol. 8, p. 82, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
R. R. Putri and N. Cahyono, “ANALISIS SENTIMEN KOMENTAR MASYARAKAT TERHADAP PELAYANAN PUBLIK PEMERINTAH DKI JAKARTA DENGAN ALGORITMA SUPER VECTOR MACHINE DAN NAIVE BAYES,” 2024.
O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based dan Random Forest,” 2023.
M. Yasir and R. Suraji, “Perbandingan Metode Klasifikasi Naive Bayes, Decision, Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 pada Media Sosial Youtube,” J. Cahaya Mandalika, vol. 3, no. 2, pp. 180–192, 2023.
F. Syah, H. Fajrin, A. N. Afif, R. Saeputra, D. Mirranty, and D. D. Saputra, “Analisa Sentimen Terhadap Twitter IndihomeCare Menggunakan Perbandingan Algoritma Smote, Support Vector Machine, AdaBoost dan Particle Swarm Optimization,” J. Teknol. Inf. dan Komunikasi), vol. 7, no. 1, 2023, doi: 10.35870/jti.
Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
H. Hidayat, F. Santoso, and L. F. Lidimillah, “Analisis Sentimen Pengguna YouTube Tentang Rohingya Menggunakan Algoritma SVM (Support Vector Machine),” G-Tech J. Teknol. Terap., vol. 8, no. 3, pp. 1729–1738, 2024, doi: 10.33379/gtech.v8i3.4497.
E. Andrian and A. Rahman Isnain, “JURNAL MEDIA INFORMATIKA BUDIDARMA Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier,” 2024, doi: 10.30865/mib.v8i2.7530.
D. D. S. Dika Wardhani, Rika Astuti, “Optimasi Feature Selection Text Mining: Stemming dan Stopword,” Innov. J. Soc. Sci. Res., vol. 4, pp. 7537–7548, 2024.
K. Kevin, M. Enjeli, and A. Wijaya, “Analisis Sentimen Pengunaaan Aplikasi Kinemaster Menggunakan Metode Naive Bayes,” J. Ilm. Comput. Sci., vol. 2, no. 2, pp. 89–98, 2024, doi: 10.58602/jics.v2i2.24.
Ardiansyah and Nur’aini, “JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ( CC BY-SA 4.0) IMPLEMENTASI ANALISIS SENTIMEN MASYARAKAT MENGENAI KENAIKAN HARGA BBM DENGAN METODE NAIVE BAYES,” J. Inf. Syst. Informatics Eng., vol. 8, no. 1, pp. 1–9, 2024, doi: 10.35145/joisie.v8i1.3838.
A. Syakir and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Perilaku Korupsi Pejabat Pemerintah Berdasarkan Tweet Menggunakan Naive Bayes Classifier,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 4, p. 1796, Oct. 2023, doi: 10.30865/mib.v7i4.6648.
T. Aura Azzahra et al., “JURNAL MEDIA INFORMATIKA BUDIDARMA Perbandingan Efektivitas Naïve Bayes dan SVM dalam Menganalisis Sentimen Kebencanaan di Youtube,” 2024, doi: 10.30865/mib.v8i1.7186.
I. Aida Sapitri and M. Fikry, “Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store Menggunakan Support Vector Machine,” J. TEKINKOM, vol. 6, no. 1, pp. 1–7, 2023, doi: 10.37600/tekinkom.v6i1.773.
P. Kumala Sari and R. Randy Suryono, “KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE DAN RANDOM FOREST UNTUK ANALISIS SENTIMEN METAVERSE,” 2024.
S. S. Murni Pardede, Tulus Pramita Sihaloho, Jenheri Rejeki Tarigan, “Implementasi Algoritma Rabin Karp Dan Optimasi Dengan Algoritma Stemmer Sastrawi Dalam Deteksi Plagiat Pada Jurnal Skripsi Mahasiswa,” J. Armada Inform., vol. 6, no. 2, pp. 1–6, 2022, [Online]. Available: https://journal.stekom.ac.id/index.php/elkom/article/download/372/308/
Mualfah Desti, “Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz AbdulSomad Dideportasi Dari Singapura MenggunakanAlgoritma SVM,” 2023.
R. Y. Pratama and P. F. Aryani, “KOMINFO TENTANG PEMBLOKIRAN GAME KEKERASAN SENTIMENT ANALYSIS OF YOUTUBE COMMENTS ON KOMINFO ’ S,” vol. 3, no. September, pp. 743–752, 2024.
M. Muadin and H. Asnal, “IMPLEMENTASI METODE SUPPORT VECTOR MACHINE PADA OPINION MINING MASYARAKAT TERKAIT CHATGPT,” JOISIE J. Inf. Syst. Informatics Eng., vol. 7, no. 1, pp. 78–84, 2023.
N. Sharfina and N. Ghaniaviyanto Ramadhan, “Terakreditasi SINTA Peringkat 3 Analisis SMOTE Pada Klasifikasi Hepatitis C Berbasis Random Forest dan Naïve Bayes,” 2026.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
