Application of the Support Vector Machine (SVM) Method to Predict Career Choices for UMSIDA Alumni
Penerapan Metode Support Vector Machine (SVM) untuk Memprediksi Pemilihan Karir bagi Alumni UMSIDA
DOI:
https://doi.org/10.21070/ups.6658Keywords:
Prediction, Career, Support Vector Machines, UmsidaAbstract
The success of higher education is not only determined by the educational process, but also the ability of its graduates to get jobs. This research aims to develop and evaluate a predictive model using the Support Vector Machine (SVM) method to predict career choices for alumni of Muhammadiyah University of Sidoarjo (UMSIDA). A quantitative approach was used with data from UMSIDA alumni tracers. The title of this research is "Application of the Support Vector Machine (SVM) Method to Predict Career Choices for UMSIDA Alumni". The evaluation results show that SVM has good performance with high precision, recall and f1-score in the dominant class. Feature analysis shows key factors influencing career choice. This model achieves 97% accuracy, providing precise recommendations for alumni.
Downloads
References
I. W. Supriana, C. Pramartha, and L. A. A. R. Putri, “Aplikasi Pengukur Tingkat Kepuasan Alumni Berdasarkan Data Tracer Study Berbasis Metode Machine Learning,” J. Resist. (Rekayasa Sist. Komputer), vol. 7, no. 1, pp. 1–9, 2024, doi: 10.31598/jurnalresistor.v7i1.1561.
H. Mahmud Nawawi, A. Baitul Hikmah, A. Mustopa, and G. Wijaya, “Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir,” J. SAINTEKOM, vol. 14, no. 1, pp. 13–25, 2024, doi: 10.33020/saintekom.v14i1.512.
J. Wibisono, A. Suharsono, and S. H. Wijoyo, “Perbandingan Kinerja Metode Naive Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Pekerjaan Berdasarkan Nilai Mata Kuliah (Studi Kasus: Alumni Program Studi Pendidikan Teknologi Informasi Fakultas Ilmu Komputer Universitas Brawijaya),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 1, pp. 2548–964, 2024, [Online]. Available: http://j-ptiik.ub.ac.id
F. Nuraeni, D. Kurniadi, M. H. Diazki, K. Garut, P. Korespondensi, and K. Karyawan, “ALGORITMA K-NEAREST NEIGHBOR PADA KASUS DATASET IMBALANCED K-NEAREST NEIGHBOR ALGORITHM AND SMOTE METHOD,” vol. 11, no. 3, pp. 557–568, 2024, doi: 10.25126/jtiik.938144.
J. R. Jhody and Program, “Penerapan Teknik Data Mining terhadap Prediksi Pemilihan Jurusan IPA/IPS Siswa Menggunakan Algoritma C4.5,” Vuca J. Media Teknol. dan Inf., vol. 1, pp. 33–37, 2024.
A. Sapta Mandala, Y. Ika, and P. Pranyata, “Optimizing education primary selection in universities: A fuzzy inference system with the mamdani method How to Cite: Arif Sapta Mandala & Yuniar Ika Putri Pranyata. (2024). Optimizing Education Major Selection in Universities: A Fuzzy Inference System wi,” J. Focus Action Res. Math. (Factor M), vol. 7, no. 1, pp. 53–70, 2024, [Online]. Available: https:/jurnalfaktarbiyah.iainkediri.ac.id/index.php/factorm/53http://doi.org/10.30762/f_m.v7i1.2596http://doi.org/10.30762/f_m.v7i1.2596http://doi.org/10.30762/f_m.v7i1.2596
A. A. Syam, G. H. M, A. Salim, D. F. Surianto, and M. F. B, “Analisis teknik preprocessing pada sentimen masyarakat terkait konflik israel-palestina menggunakan support vector machine,” vol. 9, no. 3, pp. 1464–1472, 2024.
Q. Ain, E. Utami, and A. Nasiri, “Analisis sentimen: prediksi,” vol. 9, no. 3, pp. 1586–1595, 2024.
A. Pramarta and A. Baizal, “Hybrid Recommender System Using Singular Value Decomposition and Support Vector Machine in Bali Tourism,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 408–418, 2022, doi: 10.29100/jipi.v7i2.2770.
Shelly Andari, Aditya Chandra Setiawan, Windasari, and Ainur Rifqi, “Educational Management Graduates: A Tracer Study from Universitas Negeri Surabaya, Indonesia,” IJORER Int. J. Recent Educ. Res., vol. 2, no. 6, pp. 671–681, 2021, doi: 10.46245/ijorer.v2i6.169.
M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.
Eskiyaturrofikoh and R. R. Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” vol. 8, no. 3, pp. 110–118, 2019.
A. P. Al Aufar, A. Romadhony, and H. Hasmawati, “Implementation of Question Entailment in Question Answering System for Children’S Health Topic,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, pp. 918–925, 2022, doi: 10.29100/jipi.v7i3.3101.
A. A. Rahman, S. S. Prasetiyowati, and Y. Sibaroni, “Performance Analysis of the Imbalanced Data Method on Increasing the Classification Accuracy of the Machine Learning Hybrid Method,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 1, pp. 115–126, 2023, doi: 10.29100/jipi.v8i1.3286.
N. Wahyuningsih and H. Hendry, “Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, pp. 1218–1227, 2023, doi: 10.29100/jipi.v8i4.4155.
A. D. Pratama and H. Hendry, “Analisa Sentimen Masyarakat Terhadap Penggunaan Chatgpt Menggunakan Metode Support Vector Machine (Svm),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 327–338, 2024, doi: 10.29100/jipi.v9i1.4285.
Z. Ardika and A. D. Wowor, “Analisis Sentimen Masyarakat Terhadap Program Badan Penyelenggara Jaminan Sosial (Bpjs) Menggunakan Data Twitter,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 90–99, 2024, doi: 10.29100/jipi.v9i1.4272.
P. Dan, H. Penjualan, and J. Merang, “Rancang bangun e-commerce berbasis content management system (cms) untuk meningkatkan pemasaran dan hasil penjualan jamur merang 1.,” vol. 9, no. 3, pp. 1596–1607, 2024.
M. F. Wajdi, D. I. Inan, R. Juita, and M. Sanglise, “STUDY ON THE QUALITY OF SERVICE OF THE MOBILE-BASED,” vol. 9, no. 3, pp. 1506–1517, 2024.
A. R. I. Pratama, S. A. Latipah, and B. N. Sari, “Optimasi Klasifikasi Curah Hujan Menggunakan Support Vector Machine (Svm) Dan Recursive Feature Elimination (Rfe),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 314–324, 2022, doi: 10.29100/jipi.v7i2.2675.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.