DOI of the published article https://doi.org/10.31331/medivesveteran.v8i2.3160
Spatial Reasoning of Student With Mathematical Learning Difficulties
Penalaran Spasial Siswa yang Mengalami Mathematical Learning Difficulties
DOI:
https://doi.org/10.21070/ups.5520Keywords:
Geometry, mathematical learning difficulties, spatial reasoningAbstract
Spatial reasoning is essential for solving two or three-dimensional oriented problems. Meanwhile, primary school students often experience mathematical learning difficulties (MLD) using spatial reasoning. The research analyzes the spatial reasoning of primary school students who experience MLD. The research method is qualitative, with the research subject being fifth-grade students at one of the primary schools in Sidoarjo. The research instruments used spatial reasoning tests and interview guidelines. The results stated differences in spatial reasoning in students' MLD types. Students who experience visual spatial type MLD have lower spatial reasoning skills because they cannot solve spatial orientation, mental rotation, and spatial visualization problems. Meanwhile, students who experience memory-type MLD have moderate spatial reasoning because they can solve spatial orientation and spatial visualization problems but cannot solve mental rotation problems. The researcher suggested that the subsequent research should intervene in the spatial reasoning of students who experience MLD.
Downloads
References
M. S. Khine, Visual-spatial ability in STEM education. 2017.
T. Fujita, Y. Kondo, H. Kumakura, S. Kunimune, and K. Jones, “Spatial reasoning skills about 2D representations of 3D geometrical shapes in grades 4 to 9,” Math. Educ. Res. J., vol. 32, no. 2, pp. 235–255, 2020, doi: 10.1007/s13394-020-00335-w.
G. Pavlovicova and V. SvecovA, “The development of spatial skills through discovering in the geometrical education at primary school,” Procedia - Soc. Behav. Sci., vol. 186, pp. 990–997, 2015, doi: 10.1016/j.sbspro.2015.04.189.
A. Ramful, T. Lowrie, and T. Logan, “Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students,” J. Psychoeduc. Assess., vol. 35, no. 7, pp. 709–727, 2017, doi: 10.1177/0734282916659207.
E. A. Gunderson, G. Ramirez, S. L. Beilock, and S. C. Levine, “The relation between spatial skill and early number knowledge: The role of the linear number line,” Dev. Psychol., vol. 48, no. 5, pp. 1229–1241, 2012, doi: 10.1037/a0027433.
D. H. Clements, C. Germeroth, and B. Sovran, “The Building Blocks of Mathematics for Infants and Toddlers: An Annotated Bibliography for Course Developers 2015,” 2015.
Y. L. Cheng and K. S. Mix, “Spatial training improves children’s mathematics ability,” J. Cogn. Dev., vol. 15, no. 1, pp. 2–11, 2014, doi: 10.1080/15248372.2012.725186.
S. Ma’rifatin, S. M. Amin, and T. Y. E. Siswono, “Students’ mathematical ability and spatial reasoning in solving geometric problem,” J. Phys. Conf. Ser., vol. 1157, no. 4, 2019, doi: 10.1088/1742-6596/1157/4/042062.
M. Dintarini, A. F. Jamil, and A. D. Ismail, “Secondary students’ spatial thinking in solving the minimum competency assessment (MCA) on geometry,” J. Elem., vol. 8, no. 2, pp. 544–555, 2022, doi: 10.29408/jel.v8i2.5670.
U. Hasanah and D. T. Kumoro, “Kemampuan spasial: Kajian pada siswa usia sekolah dasar,” J. Pacu Pendidik. Dasar, vol. 1, no. 1, pp. 27–34, 2021, [Online]. Available: https://unu-ntb.e-journal.id/pacu/article/view/68/19.
A. P. Kusuma, Rochmad, and Isnarto, “Penerapan model accelerated learning cycle terhadap penalaran matematis ditinjau dari kemampuan spasial,” Prism. Pros. Semin. Nas. Mat., vol. 4, no. 1, pp. 75–79, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/44952.
D. D. P. Lestari, M. T. Budiarto, and A. Lukito, “Analisis kemampuan spatial visualization siswa sekolah dasar dalam pemecahan masalah geometri: Ditinjau dari kemampuan matematika tingkat tinggi,” ELSE (Elementary Sch. Educ. Journal) J. Pendidik. dan Pembelajaran Sekol. Dasar, vol. 5, no. 1, p. 55, 2021, doi: 10.30651/else.v5i1.7371.
R. Z. Musriroh, E. Hidayanto, and R. Rahardi, “Penalaran spasial matematis dimensi persepsi dan visualisasi kelas VIII dalam pemecahan masalah geometri,” J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 6, no. 11, p. 1774, 2021, doi: 10.17977/jptpp.v6i11.15144.
T. Lowrie, T. Logan, and M. Hegarty, “The influence of spatial visualization training on students’ spatial reasoning and mathematics performance,” J. Cogn. Dev., vol. 20, no. 5, pp. 729–751, 2019, doi: 10.1080/15248372.2019.1653298.
D. G. Dimitriu and D. C. Dimitriu, “A simple method to help students improve 3-D visualization skills,” ASEE Annu. Conf. Expo. Conf. Proc., vol. 2020-June, 2020.
Z. Hawes, J. Moss, B. Caswell, S. Naqvi, and S. MacKinnon, “Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention,” Cogn. Instr., vol. 35, no. 3, pp. 236–264, 2017, doi: 10.1080/07370008.2017.1323902.
T. Lowrie, T. Logan, and A. Ramful, “Visuospatial training improves elementary students’ mathematics performance,” Br. J. Educ. Psychol., vol. 87, no. 2, pp. 170–186, 2017, doi: 10.1111/bjep.12142.
S. Chinn, The routledge international handbook of dyscalculia and mathematical learning difficulties. 2014.
D. Bartelet, D. Ansari, A. Vaessen, and L. Blomert, “Cognitive subtypes of mathematics learning difficulties in primary education,” Res. Dev. Disabil., vol. 35, no. 3, pp. 657–670, 2014, doi: 10.1016/j.ridd.2013.12.010.
G. Karagiannakis, A. Baccaglini-frank, and Y. Papadatos, “Mathematical learning difficulties subtypes classification,” Front. Hum. Neurosci., vol. 8, no. February, pp. 1–5, 2014, doi: 10.3389/fnhum.2014.00057.
S. Yazdani, S. Soluki, A. A. Arjmandnia, J. Fathabadi, S. Hassanzadeh, and V. Nejati, “Spatial ability in children with Mathematics Learning Disorder (MLD) and its impact on executive functions,” Dev. Neuropsychol., vol. 46, no. 3, pp. 232–248, 2021, doi: 10.1080/87565641.2021.1913165.
X. Zhang, W. Fu, L. Xue, J. Zhao, and Z. Wang, “Children with mathematical learning difficulties are sluggish in disengaging attention,” Front. Psychol., vol. 10, no. APR, pp. 1–9, 2019, doi: 10.3389/fpsyg.2019.00932.
K. Beswick, “Influencing teachers’ beliefs about teaching mathematics for numeracy to students with mathematics learning difficulties,” Math. Teach. Educ. Dev., vol. 9, no. 2000, pp. 3–20, 2008, [Online]. Available: http://ecite.utas.edu.au/55228/1/MTED_9_Beswick.pdf.
M. M. M. Mazzocco, “An introduction to the special issue: Pathways to mathematical learning difficulties and disabilities,” Dev. Disabil. Res. Rev., vol. 15, no. 1, pp. 1–3, 2009, doi: 10.1002/ddrr.52.
E. L. H. Donnelly, “Exploring the spatial-math link: The impact of tailored visual memory interventions for children with MLD,” 2021, [Online]. Available: https://prism.ucalgary.ca/handle/1880/112974%0Ahttps://prism.ucalgary.ca/bitstream/handle/1880/112974/ucalgary_2021_donnelly_emma.pdf?sequence=2&isAllowed=y.
S. Levy, N. B. Turk-Browne, and L. Goldfarb, “Impaired visuo-spatial statistical learning with mathematical learning difficulties,” Vis. cogn., no. May, 2023, doi: 10.1080/13506285.2023.2208887.
J. M. Thompson, H. C. Nuerk, K. Moeller, and R. Cohen Kadosh, “The link between mental rotation ability and basic numerical representations,” Acta Psychol. (Amst)., vol. 144, no. 2, pp. 324–331, 2013, doi: 10.1016/j.actpsy.2013.05.009.
M. M. Murphy, M. M. M. Mazzocco, L. B. Hanich, and M. C. Early, “Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD,” J. Learn. Disabil., vol. 40, no. 5, pp. 458–478, 2007.
D. Szucs, A. Devine, F. Soltesz, A. Nobes, and F. Gabriel, “Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment,” Cortex, vol. 49, no. 10, pp. 2674–2688, 2013, doi: 10.1016/j.cortex.2013.06.007.
K. Skagerlund and U. Träff, “Development of magnitude processing in children with developmental dyscalculia: Space, time, and number,” Front. Psychol., vol. 5, no. JUN, pp. 1–16, 2014, doi: 10.3389/fpsyg.2014.00675.
X. Zhang and P. Rasanen, “Early cognitive precursors of children’s mathematics learning disability and persistent low achievement: a 5-year longitudinal study,” Child Dev., vol. 91, no. 1, pp. 7–27, 2020, doi: 10.1111/cdev.13123.
J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods approaches. SAGE Publications, 2014.
M. Pittalis and C. Christou, “Types of reasoning in 3D geometry thinking and their relation with spatial ability,” Educ. Stud. Math., vol. 75, no. 2, pp. 191–212, 2010, doi: 10.1007/s10649-010-9251-8.
M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data analysis. SAGE Publications, 2014.
B. De Smedt, J. Taylor, L. Archibald, and D. Ansari, “How is phonological processing related to individual differences in children’s arithmetic skills?,” Dev. Sci., vol. 13, no. 3, pp. 508–520, 2010, doi: 10.1111/j.1467-7687.2009.00897.x.
T. Lowrie, T. Logan, D. Harris, and M. Hegarty, “The impact of an intervention program on students’ spatial reasoning: student engagement through mathematics-enhanced learning activities,” Cogn. Res. Princ. Implic., vol. 3, no. 1, pp. 1–10, 2018, doi: 10.1186/s41235-018-0147-y.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.