The Role of Artificial Intelligence in Digital Marketing Innovation for Forecasting New Student Admissions
Peran Artificial Intelligence Dalam Inovasi Digital Marketing Untuk Peramalan Penerimaan Mahasiswa Baru
DOI:
https://doi.org/10.21070/ups.5284Keywords:
Artificial Intelligence, Digital Marketing, Forecasting, Artificial Neural NetworkAbstract
This article discusses the development of Artificial Intelligence (AI) technology in the industrial era 4.0 and its role in digital marketing and forecasting. This study aims to forecast the number of new students before and after the COVID-19 period using the Artificial Neural Network (ANN) method and explore the role of AI in digital marketing. This study uses explanatory sequential mixed methods, which combines a quantitative approach with the ANN model and a descriptive qualitative approach to determine digital marketing strategy. The data used is new student admission data from the XYZ Institute from 2014 to 2023. The forecasting results with the ANN model showed an accuracy of 98.808% before COVID-19 and 98.866% after COVID-19, with MAPE values of 1.192% and 1.1ss34%, respectively, indicating that this model is very accurate. Before COVID-19, digital marketing was not implemented in 2014-2015 but began using Google and Facebook in 2016-2018 and continued after COVID-19 in 2019-2023. This research gap fills the gap by using explanatory sequential mixed methods that are rarely used in similar studies, and the results show that the use of AI in digital marketing strategies can increase effectiveness, especially by using Google and Facebook as the leading platforms.
Downloads
References
C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and prospects,” J. Ind. Inf. Integr., vol. 23, p. 100224, 2021, doi: 10.1016/j.jii.2021.100224.
I. Ahmed, G. Jeon, and F. Piccialli, “From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where,” IEEE Trans. Ind. Informatics, vol. 18, no. 8, pp. 5031–5042, 2022, doi: 10.1109/TII.2022.3146552.
S. Akgun and C. Greenhow, “Artificial Intelligence (AI) in Education: Addressing Societal and Ethical Challenges in K-12 Settings,” AI Ethics, vol. 2, pp. 431–440, 2022, doi: 10.1007/s43681-021-00096-7.
A. Nguyen, H. N. Ngo, Y. Hong, B. Dang, and B. P. T. Nguyen, “Ethical principles for artificial intelligence in education,” Educ. Inf. Technol., vol. 28, no. 4, pp. 4221–4241, 2023, doi: 10.1007/s10639-022-11316-w.
H. Khosravi et al., “Explainable Artificial Intelligence in education,” Comput. Educ. Artif. Intell., vol. 3, no. March 2022, doi: 10.1016/j.caeai.2022.100074.
Aditya Nirwana, Sudarmiatin, and Melany, “Implementation of Artificial Intelligence in Digital Marketing Development: a Thematic Review and Practical Exploration,” J. Manaj. Bisnis, Akunt. dan Keuang., vol. 2, no. 1, pp. 85–112, 2023, doi: 10.55927/jambak.v2i1.4034.
C. Guan, J. Mou, and Z. Jiang, “Artificial intelligence innovation in education: A twenty-year data-driven historical analysis,” Int. J. Innov. Stud., vol. 4, pp. 134–147, 2020, doi: 10.1016/j.ijis.2020.09.001.
A. D. Suwandita, V. Pijasari, A. Eka Diani Prasetyowati, and M. Isa Anshori, “Analisis Data Human Resources Untuk PengambilanKeputusan: Penggunaan Analisis Data Dan Artificial Intelligence (AI) Dalam Meramalkan Tren Sumber Daya Manusia, Pengelolaan Talenta, Dan Rentensi Karyawan,” Manaj. Kreat. J., vol. 1, no. 4, pp. 97–111, 2023, [Online]. Available: https://doi.org/10.55606/makreju.v1i4.2161
G. J. Hwang, H. Xie, B. W. Wah, and D. Gašević, “Vision, challenges, roles and research issues of Artificial Intelligence in Education,” Comput. Educ. Artif. Intell., vol. 1, 2020, doi: 10.1016/j.caeai.2020.100001.
G. Vallone and L. Longo, “Notions of explainability and evaluation approaches for explainable artificial intelligence,” Inf. Fusion, vol. 76, pp. 89–106, 2021, doi: 10.1016/j.inffus.2021.05.009.
S.N.Nadeem, “EFFECTIVE DIGITAL MARKETING STRATEGY IN EDUCATION SECTOR,” Int. J. Multidiscip. Educ. Res., vol. 11, no. 11, pp. 146–152, 2022.
F. Khan, K. S.-J. of I. S. & Operations, and U. 2013, “Measuring the Perception and Effectiveness of Digital Marketing amongst the Marketing Professionals, an Exploratory Study in Odisha.,” Indian J. Nat. Sci., vol. 13, no. 72, 2022, [Online]. Available: https://www.researchgate.net/profile/Mircea-Cirnu/publication/260424967_Circular_convolution_and_discrete_Fourier_transform/links/0deec533f63683a136000000/Circular-convolution-and-discrete-Fourier-transform.pdf#page=17
P. Pandiangan and I. A. O. Martini, “Digital Marketing Strategy of Property Agents in The New Normal Era,” JMBI UNSRAT (Jurnal Ilm. Manaj. Bisnis dan Inov. Univ. Sam Ratulangi)., vol. 7, no. 3, pp. 502–511, 2021, doi: 10.35794/jmbi.v7i3.31251.
M. K. Peter and M. Dalla Vecchia, The Digital Marketing Toolkit: A Literature Review for the Identification of Digital Marketing Channels and Platforms, vol. 294, no. March. Springer International Publishing, 2021. doi: 10.1007/978-3-030-48332-6_17.
I. Putu, T. Noviana, and G. S. Darma, “Exploring Digital Marketing Strategies during the New Normal Era in Enhancing the Use of Digital Payment,” J. Mantik, vol. 4, no. 3, pp. 2257–2262, 2020, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik%0Ahttps://ejournal.iocscience.org/index.php/mantik/article/view/1084
J. R. Saura, “Using Data Sciences in Digital Marketing: Framework, methods, and performance metrics,” J. Innov. Knowl., vol. 6, pp. 92–102, 2021, doi: 10.1016/j.jik.2020.08.001.
A. Masrianto, H. Hartoyo, Hubeis, A. V. S., and N. Hasanah, “Digital Marketing Utilization Index for Evaluating and Improving Company Digital Marketing Capability,” J. Open Innov. Technol. Mark. Complex., vol. 8, 2022, doi: 10.3390/joitmc8030153.
Y. Hartanto, M. A. Firmansyah, and L. Adhrianti, “Implementation Digital Marketing Pesona 88 Curup in to Build Image for the Decision of Visit Tourist Attraction,” Proc. 4th Soc. Humanit. Res. Symp. (SoRes 2021), vol. 658, no. SoRes 2021, pp. 589–594, 2022, doi: 10.2991/assehr.k.220407.121.
A. M. Harbi and M. Maqsood Ali, “Adoption of Digital Marketing in Educational Institutions: A Critical Literature Review,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 22, pp. 463–472, 2022, doi: 10.22937/IJCSNS.2022.22.4.55.
A. Kaya, G. Kaya, and F. Çebi, “Forecasting automobile sales in Turkey with artificial neural networks,” Int. J. Bus. Anal., vol. 6, no. 4, pp. 50–60, 2019, doi: 10.4018/IJBAN.2019100104.
N. Effendy et al., “Artificial neural network prediction on ultrasonic performance of bismuth-tellurite glass compositions,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 14082–14092, 2020, doi: 10.1016/j.jmrt.2020.09.107.
M. Ilbeigi, M. Ghomeishi, and A. Dehghanbanadaki, “Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm,” Sustain. Cities Soc. (2020), vol. 1, 2020, doi: 10.1016/j.scs.2020.102325.
S. K. Tamang, P. D. Singh, and B. Datta, “Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique,” Glob. J. Environ. Sci. Manag., vol. 6, pp. 53–64, 2020, doi: 10.22034/GJESM.2019.06.SI.06.
G. M. Mulualem and Y. A. Liou, “Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the upper Blue Nile basin,” Water (Switzerland), vol. 12, no. 3, 2020, doi: 10.3390/w12030643.
İ. Güven and F. Şimşir, “Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN) and support vector machines (SVM) methods,” Comput. Ind. Eng., vol. 147, no. July, 2020, doi: 10.1016/j.cie.2020.106678.
H. Doresdiana, S. Madelan, and A. B. Saluy, “Spare Parts Demand Forecasting During Covid 19 pandemic,” Dinasti Int. J. Econ. Financ. Account., vol. 2, no. 2, pp. 215–226, 2021, doi: 10.38035/dijefa.v2i2.852.
G. Alkhayat and R. Mehmood, “A review and taxonomy of wind and solar energy forecasting methods based on deep learning,” Energy AI, vol. 4, 2021, doi: 10.1016/j.egyai.2021.100060.
M. Karl, F. Kock, B. W. Ritchie, and J. Gauss, “Affective forecasting and travel decision-making: An investigation in times of a pandemic,” Ann. Tour. Res., vol. 87, 2021, doi: 10.1016/j.annals.2021.103139.
L. Akyuz and H. Bilgil, “Application of Standard and Exponential Grey Forecasting Models on Turkeys Education Expenditures,” New Trends Math. Sci., vol. 10, no. 4, pp. 9–19, 2022, doi: 10.20852/ntmsci.2022.484.
S. Semerikov, H. Kucherova, V. Los, and D. Ocheretin, “Neural network analytics and forecasting the country’s business climate in conditions of the coronavirus disease (COVID-19),” CEUR Workshop Proc., pp. 22–32, 2020.
A. Fauzan, D. G. Rahayu, A. Handayani, I. Tahyudin, D. I. S. Saputra, and P. Purwadi, “Sales Forecasting Analysis Using Trend Moment Method: A Study Case of a Fast Moving Consumer Goods Company in Indonesia,” J. Inf. Technol. Cyber Secur., vol. 1, no. 1, pp. 1–8, 2023, doi: 10.30996/jitcs.7572.
A. K. Sahai, N. Rath, V. Sood, and M. P. Singh, “ARIMA modelling & forecasting of COVID-19 in top five affected countries,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, pp. 1419–1427, 2020, doi: 10.1016/j.dsx.2020.07.042.
M. N. Atchadé and Y. M. Sokadjo, “Overview and cross-validation of COVID-19 forecasting univariate models,” Alexandria Eng. J., vol. 61, no. 4, pp. 3021–3036, 2022, doi: 10.1016/j.aej.2021.08.028.
M. Awaludin and A. G. Gani, “Pemanfaatan kecerdasan buatan pada algoritma k-means klastering dan sentiment analysis terhadap strategi promosi yang sukses untuk penerimaan mahasiswa baru,” pp. 1–6, 2023.
B. Biswas, M. K. Sanyal, and T. Mukherjee, “AI-Based Sales Forecasting Model for Digital Marketing,” Int. J. E-bus. Res., vol. 19, no. 1, pp. 1–14, 2023, doi: 10.4018/IJEBR.317888.
D. Vukovic, Y. Vyklyuk, N. Matsiuk, and M. Maiti, “Neural network forecasting in prediction Sharpe ratio: Evidence from EU debt market,” Phys. A Stat. Mech. its Appl., vol. 542, 2020, doi: 10.1016/j.physa.2019.123331.
S. D. Latif, M. S. B. N. Azmi, A. N. Ahmed, C. M. Fai, and A. El-Shafie, “Application of Artificial Neural Network for Forecasting Nitrate Concentration as a Water Quality Parameter: A Case Study of Feitsui Reservoir, Taiwan,” Int. J. Des. Nat. Ecodynamics, vol. 15, no. 5, pp. 647–652, 2020, doi: 10.18280/ijdne.150505.
M. de B. Braga et al., “Artificial neural networks for short-term forecasting of cases, deaths, and hospital beds occupancy in the COVID-19 pandemic at the Brazilian Amazon,” PLoS One, vol. 16, no. 3, p. e0248161, 2021, doi: 10.1371/journal.pone.0248161.
P. R. Jena, R. Majhi, R. Kalli, S. Managi, and B. Majhi, “Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster,” Econ. Anal. Policy, vol. 69, no. December, pp. 324–339, 2021, doi: 10.1016/j.eap.2020.12.013.
V. Wineka Nirmala, D. Harjadi, and R. Awaluddin, “Sales Forecasting by Using Exponential Smoothing Method and Trend Method to Optimize Product Sales in PT. Zamrud Bumi Indonesia During the Covid-19 Pandemic,” Int. J. Eng. Sci. Inf. Technol., vol. 1, no. 4, pp. 59–64, 2021, doi: 10.52088/ijesty.v1i4.169.
L. Gossling, J. J. P. Alix, T. Stavroulakis, and A. R. Hart, “Investigating and managing neonatal seizures in the UK: An explanatory sequential mixed methods approach,” BMC Pediatr., vol. 20, no. 1, pp. 1–15, 2020, doi: 10.1186/s12887-020-1918-4.
W. W. Thammasat, R. A. Stewart, K. Panuwatwanich, and J. Sunkpho, “Applying Mixed Methods Sequential Explanatory Design to Innovation Management,” 10th Int. Conf. Eng. Proj. Prod. Manag., vol. 1, 2020, doi: 10.1007/978-981-15-1910-9.
D. M. Jenkins, “WHAT THE BEST LEADERSHIP EDUCATORS DO: A Sequential Explanatory Mixed Methods Study of Instructional and Assessment Strategy Use in Leadership Education,” J. Leadersh. Educ., vol. 19, no. 4, pp. 37–55, 2020, doi: 10.12806/v19/i4/r4.
M. S. Romadhon, R. T. Nugroho, Y. Saputra, and Paduloh, “Analisis Peramalan Penjualan Susu Formula Di Toko Susu Ty- Syar Dengan Menggunakan Metode Moving Average,” J. Salome Multidisipliner Keilmuan, vol. 2, no. 1, pp. 117–125, 2024.
T. Yuniarti, I. Rusmar, T. Rachmi Hidayani, M. Mirnandaulia, and P. Teknologi Kimia Industri, “Penggunaan Artificial Neural Network (ANN) Untuk Memodelkan Volume Ekspor Crude Palm Oil (CPO) Di Indonesia,” Ready Star 2, vol. 2, no. 1, pp. 247–255, 2019.
M. Rianto and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest,” Paradig. - J. Komput. dan Inform., vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9781.
Z. Bánhidi and I. Dobos, “Sensitivity of TOPSIS ranks to data normalization and objective weights on the example of digital development,” Cent. Eur. J. Oper. Res., vol. 32, pp. 29–44, 2024, doi: 10.1007/s10100-023-00876-y.
R. U. Bollapragada and A. Mankude, “Forecasting the price of crude oil,” DECISION, vol. 48, no. 2, pp. 207–231, 2021, doi: 10.1007/s40622-021-00279-5.
M. Ssenyonga, “Imperatives for post COVID-19 recovery of Indonesia’s education, labor, and SME sectors,” Cogent Econ. Financ., vol. 9, 2021, doi: 10.1080/23322039.2021.1911439.
C. Ziakis and M. Vlachopoulou, “Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review,” Inf., vol. 14, no. 664, pp. 1–30, 2023, doi: 10.3390/info14120664.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.