Prediction of Life Expectancy Based on Socioeconomic and Health Factors Using Random Forest Regressor Algorithm
Prediksi Angka Harapan Hidup Berdasarkan Faktor Sosioekonomi Dan Kesehatan Menggunakan Algoritma Random Forest Regressor
DOI:
https://doi.org/10.21070/ups.5087Keywords:
Life expectancy prediction, Random Forest Regressor, Correlation analysisAbstract
This research aims to develop a predictive model for life expectancy in various Asian countries using the Random Forest Regressor algorithm. The model is capable of predicting life expectancy with an accuracy rate of 96.5% and a Mean Absolute Error (MAE) of 0.99. Correlation analysis indicates that the "school_year," "HDI," and "BMI" features have a significant impact on life expectancy, highlighting the strong relationship between education, human development, dietary patterns, and societal well-being. The findings of this study can support policy efforts to enhance the welfare and quality of life of populations across different Asian countries, with a focus on education, human development, healthy eating habits, and an active lifestyle.
Downloads
References
R. Muda, R. Koleangan, and J. Bintang Kalangi, “PENGARUH ANGKA HARAPAN HIDUP, TINGKAT PENDIDIKAN DAN PENGELUARAN PERKAPITA TERHADAP PERTUMBUHAN EKONOMI DI SULAWESI UTARA PADA TAHUN 2003-2017,” Jurnal Berkala Ilmiah Efisiensi, 2019.
F. Winston, N. 1, M. D. Pangastuti, and Y. R. S. S. S. B. Utami, “Analisis determinan faktor penentu usia harapan hidup di Provinsi Nusa Tenggara Timur,” Jurnal Ekonomi, Keuangan dan Manajemen, vol. 18, no. 3, p. 459, 2022, doi: 10.29264/jinv.v18i3.10813.
I. Arofah and S. Rohimah, “ANALISIS JALUR UNTUK PENGARUH ANGKA HARAPAN HIDUP, HARAPAN LAMA SEKOLAH, RATA-RATA LAMA SEKOLAH TERHADAP INDEKS PEMBANGUNAN MANUSIA MELALUI PENGELUARAN RIIL PER KAPITA DI PROVINSI NUSA TENGGARA TIMUR,” JURNAL SAINTIKA UNPAM, 2019.
P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742- 6596/1255/1/012033.
A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1255/1/012016.
A. Sekulić, M. Kilibarda, G. B. M. Heuvelink, M. Nikolić, and B. Bajat, “Random forest spatial interpolation,”
Remote Sens (Basel), vol. 12, no. 10, 2020, doi: 10.3390/rs12101687.
M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” Stata Journal, vol. 20, no. 1, 2020, doi: 10.1177/1536867X20909688.
M. Erkamim, S. Suswadi, M. Z. Subarkah, and E. Widarti, “Komparasi Algoritme Random Forest dan XGBoosting dalam Klasifikasi Performa UMKM,” Jurnal Sistem Informasi Bisnis, vol. 13, no. 2, pp. 127– 134, Oct. 2023, doi: 10.21456/vol13iss2pp127-134.
R. Oktavia et al., “Penerapan Metode Algoritma K-means Dalam Pengelompokan Angka Harapan Hidup Saat Lahir Menurut Provinsi.” [Online]. Available: www.bps.go.id/
S. P. Sinaga et al., “Implementasi Jaringan Syaraf Tiruan Resilient Backpropagation dalam Memprediksi Angka Harapan Hidup Masyarakat Sumatera Utara,” Jurnal Infomedia, vol. 4, no. 2, 2019.
T. Afriliansyah and Z. Zulfahmi, “Prediksi Angka Harapan Hidup Masyarakat Aceh dengan Model Terbaik Algoritma Cyclical Order,” Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), vol. 2, pp. 441–449, 2020.
J. S. Komputer, K. Buatan, and B. Muhammad, “Implementasi Data Mining untuk Prediksi Standar Hidup Layak Berdasarkan Tingkat Kesehatan dan Pendidikan Masyarakat,” Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), vol. 2, no. 2, 2019.
S. F. Manurung, A. Andriansya, J. Permana, and R. Pangestu, “Pemanfaatan Algoritma JST untuk Menentukan Model Prediksi Umur Harapan Hidup Saat Lahir,” Hello World Jurnal Ilmu Komputer, vol. 1, no. 1, pp. 19–35, May 2022, doi: 10.56211/helloworld.v1i1.9.
P. R. , , D. A. Sihombing, S. Suryadiningrat, and Y. P. A. C. Yuda, . “Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya,” Jurnal Ekonomi dan Statistik Indonesia, pp. 307–316, 2022.
C. Nkikabahizi, W. Cheruiyot, and A. Kibe, “Chaining Zscore and feature scaling methods to improve neural networks for classification[Formula presented],” Appl Soft Comput, vol. 123, 2022, doi: 10.1016/j.asoc.2022.108908.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, 2021, doi: 10.3390/informatics8040079.
D. A. Anggoro and N. A. Afdallah, “Grid Search CV Implementation in Random Forest Algorithm to Improve Accuracy of Breast Cancer Data,” Int J Adv Sci Eng Inf Technol, vol. 12, no. 2, 2022, doi: 10.18517/ijaseit.12.2.15487.
P. Zhang, Y. Jia, and Y. Shang, “Research and application of XGBoost in imbalanced data,” Int J Distrib Sens Netw, vol. 18, no. 6, 2022, doi: 10.1177/15501329221106935.
D. S. K. Karunasingha, “Root mean square error or mean absolute error? Use their ratio as well,” Inf Sci (N Y), vol. 585, 2022, doi: 10.1016/j.ins.2021.11.036.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.