Predictive Maintenance on Batching Plant Machines Using Support Vector Machine (SVM)
Predictive Maintenance pada Mesin Batching Plant Menggunakan Support Vector Machine (SVM)
DOI:
https://doi.org/10.21070/ups.4756Keywords:
Predictive Maintenance, Support Vector Machine, pyhtonAbstract
The escalating demand for enhanced productivity and the integration of advanced technology through machinery usage have led to a growing necessity for maintenance operations. PT. XYZ, a manufacturer of ready mix concrete, is currently facing challenges related to production machinery experiencing excessive engine loads, resulting in operational downtime and process delays, consequently diminishing machine performance. The primary objective of this investigation is to anticipate the occurrence of machinery failures in order to establish a suitable periodic maintenance schedule. The chosen approach for this study involves the application of the Support Vector Machine algorithm, which is executed using the Python programming language. This predictive analysis aims to enhance machine efficiency and performance by forecasting potential damages or malfunctions that could manifest in the future. Where this SVM can predict accurate breakdowns and optimize maintenance schedules proactively at the right time.
Downloads
References
A. B. Sulistyo and S. Muhlis, “Analisis Sistem Perawatan Pada Mesin Gulung Primer Dengan Metode Reliability Centered Maintenance (RCM) Dan Failure Mode And Effect Analysis (FMEA),” J. InTent, vol. 5, no. 2, pp. 27–35, 2022.
A. Santosa, Budi; Umam, Data Mining dan Big Data Analytics: Teori dan implementasi menggunakan phyton dan apache spark, Edisi 2. Yogyakarta: Penebar Media Pustaka, 2018.
A. W. Daseno, A. Komari, and H. B. Santoso, “Perencanaan Pengelolaan Limbah Kaca Grafir Menjadi Produk Inovasi Baru Guna Menambah Pendapatan Perusahaan (Sudi Kasus Pada UD. Pelangi Art Glass),” JURMATIS (Jurnal Manaj. Teknol. dan Tek. Ind., vol. 3, no. 1, p. 24, 2021, doi: 10.30737/jurmatis.v3i1.1403.
B. M. Werdiningsih, Indah; Nuqoba, DATA MINING MENGGUNAKAN ANDROID, WEKA, dan SPSS. Surabaya: Airlangga University Press, 2020.
B. P. Kamiel, A. J. Wiranto, B. Riyanta, and S. Yulianto, “Klasifikasi Cacat Lintasan Dalam Bantalan Bola Berbasis Support Vector Machine (SVM) pada Fan Industri,” Semesta Tek., vol. 22, no. 2, pp. 143–152, 2021, doi: 10.18196/st.222246.
B. Sajiwo et al., “PREDIKSI REMAINING USEFUL LIFE ( RUL ) PADA JET ENGINE SEBAGAI UPAYA,” vol. 11, no. 4, pp. 7–18, 2023.
C. Chen, H. Fu, Y. Zheng, F. Tao, and Y. Liu, “The advance of digital twin for predictive maintenance: The role and function of machine learning,” J. Manuf. Syst., vol. 71, no. October, pp. 581–594, 2023, doi: 10.1016/j.jmsy.2023.10.010.
D. S. Permana and A. Silvanie, “Prediksi Penyakit Jantung Menggunakan Support Vector Machine dan Python pada Basis Data Pasien di Cleveland,” JUNIF J. Nas. Inform., vol. 2, no. 1, pp. 29–34, 2021.
I. Alfarobi, S. Wirahadi, and K. Widianto, “Menggunakan Hyperparameter Tunning Svm Dan Logistic Regression,” Jisamar, vol. 7, no. 3, pp. 854–861, 2023, doi: 10.52362/jisamar.v7i3.771.
I. Daqiqil, MACHINE LEARNING : Teori, Studi Kasus dan Implementasi Menggunakan Python, Edisi 1. Riau: UR PRESS, 2021.
I. Zein, D. Mulyati, and I. Saputra, “Perencanaan Perawatan Mesin Kompresor Pada PT. Es Muda Perkasa Dengan Metode Reliability Centered Maintenance (RCM),” J. Serambi Eng., vol. 4, no. 1, p. 383, 2020, doi: 10.32672/jse.v4i1.848.
K. Y. Nazara, “Perancangan Smart Predictive Maintenance untuk Mesin Produksi,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 691–702, 2022, doi: 10.34123/semnasoffstat.v2022i1.1575.
M. Nasution, A. Bakhori, and W. Novarika, “Manfaat Perlunya Manajemen Perawatan Untuk Bengkel Maupun Industri,” Bul. Utama Tek., vol. 16, No. 3, pp. 248–252, 2021.
N. Khumaidah and T. Sukmono, “Forecasting the Number of Offset Printing Machine Breakdowns Using the Support Vector Machine (SVM) Metdhod,” Procedia Eng. Life Sci., vol. 1, no. 2, 2021, doi: 10.21070/pels.v1i2.1027.
R. M. Karina, “Perancangan Program Perawatan Yang Efektif Untuk Menurunkan Downtime Mesin Pada Lube Oil Blending Plant (LOBP),” vol. 50, no. 3, pp. 185–191, 2023.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
S. C. R. H. Haliza and A. Qoiriah, “Predictive Maintenance untuk Kendaraan Bermotor dengan Menggunakan Support Vector Machine (SVM),” J. Informatics Comput. Sci., vol. 2, no. 03, pp. 159–168, 2021, doi: 10.26740/jinacs.v2n03.p159-168.
S. Saikin, S. Fadli, and M. Ashari, “Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Results,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 1, pp. 22–27, 2021, doi: 10.31326/jisa.v4i1.881.
T. J. Wibowo, T. S. Hidayatullah, and A. Nalhadi, “Analisa Perawatan pada Mesin Bubut dengan Pendekatan Reliability Centered Maintenance (RCM),” J. Rekayasa Ind., vol. 3, no. 2, pp. 110–120, 2021, doi: 10.37631/jri.v3i2.485.
Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022, doi: 10.32736/sisfokom.v11i3.1502.
Y. Y. Rohmatin, “Modeling Dan Clustering Data Maining Pemeliharaan Mesin Dengan Menggunakan Rapid Mainer,” Pros. SeNTIK, vol. 3, pp. 85–87, 2022.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.