Comparing of Artificial Neural Network and Multiplicative Holt Winters Exponential Smoothing Methods in Forecasting Demand
Perbandingan Metode Jaringan Syaraf Tiruan dan Multiplicative Holt Winters Exponential Smoothing dalam Meramalkan Permintaan
DOI:
https://doi.org/10.21070/ups.3913Keywords:
Forecasting, Demand, Multiplicative Holt-Winters, Artificial Neural Network, RapidMinerAbstract
One of the challenges faced by business operators is the fluctuation in the quantity of raw material orders, leading to both shortages and excesses, particularly during specific months such as approaching holidays and the new year. To address this issue, this research aims to forecast the demand for wallet products from the UMKM Pengerajin Dompet Khas Tanggulangin (PDKT) by comparing two methods: Artificial Neural Networks capable of extrapolating data to forecast future periods, and the Multiplicative Holt Winters method designed specifically for data with seasonal patterns. A comparative analysis is conducted to determine the method with the highest accuracy. The research results indicate that the Artificial Neural Network method yields an RMSE value of 14.249, whereas the Holt Winters method produces an RMSE value of 93.436. From this comparison, it can be concluded that the Artificial Neural Network method exhibits better accuracy compared to the Holt Winters method.
Downloads
References
F. C. Wijaya et al., “Penerapan metode jst backpropagation pada peramalan produksi pastry di hyfresh blitar,” vol. 7, no. 4, pp. 2629–2635, 2023.
Muhammad Rizal, Dewi Rosa Indah, and Rahmi Meutia, “Analisis Peramalan Produksi Menggunakan Trend Moment Pada Kilang Padi Do’a Ibu Diperlak Kecamatan Pereulak,” J. Samudra Ekon., vol. 5, no. 2, pp. 161–168, 2021, doi: 10.33059/jse.v5i2.4274.
A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X.”
M. Mirdaolivia and A. Amelia, “Metode Exponential Smoothing Untuk Forecasting Jumlah Penduduk Miskin Di Kota Langsa,” J. Gamma-Pi, vol. 3, no. 1, pp. 47–52, 2021, doi: 10.33059/jgp.v3i1.3771.
Nindian Puspa Dewi, “Implementasi Holt-Winters Exponential Smoothing untuk Peramalan Harga Bahan Pangan di Kabupaten Pamekasan,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 2, pp. 223–236, 2020, doi: 10.31849/digitalzone.v11i2.4797.
D. Puspitaningrum, “Jaringan Saraf Tiruan,” Pengantar Jar. Saraf Tiruan, pp. 1–222, 2006.
A. Yusuf, K. Kusrini, and A. H. Muhammad, “Perbandingan Additive dan Multiplicative Exponential Smoothing Terhadap Prakiraan Kualitas Udara di Banjarmasin,” J. ELTIKOM, vol. 6, no. 1, pp. 40–55, 2022, doi: 10.31961/eltikom.v6i1.507.
R. Nofitri and N. Irawati, “Analisis Data Hasil Keuntungan Menggunakan Software Rapidminer,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 2, pp. 199–204, 2019, doi: 10.33330/jurteksi.v5i2.365.
R. Ambarwati and Supardi, Buku Ajar Manajemen Operasional Dan. 2020.
D. Nofriansyah, konsep data mining vs sistem pendukung keputusan, Edisi 1. deepublish.
M. Buchori and T. Sukmono, “Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ,” PROZIMA (Productivity, Optim. Manuf. Syst. Eng., vol. 2, no. 1, pp. 27–33, 2018, doi: 10.21070/prozima.v2i1.1290.
A. N. Aini, P. K. Intan, and N. Ulinnuha, “Predikisi Rata-Rata Curah Hujan Bulanan di Pasuruan Menggunakan Metode Holt-Winters Exponential Smoothing,” JRST (Jurnal Ris. Sains dan Teknol., vol. 5, no. 2, p. 117, 2022, doi: 10.30595/jrst.v5i2.9702.
M. A. Putri and T. Sukmono, “Forecasting Analysis Sales of Shrimp Cracker Using Artificial Neural Network Method (ANN) [Analisa Peramalan Penjualan Kerupuk Udang Dengan Menggunakan Metode Artificial Neural Network (ANN)],” vol. 370, p. 514, [Online]. Available: http://doi.org/10.21070/ijccd.v4i1.843
S. M. Sari, I. Apriliana, and S. Wulandari, “Forecasting Product Sales of Crackers Using Artificial Neural Network Method and Double Exponential Smoothing Holts [ Peramalan Penjualan Produk Kerupuk Pasir Menggunakan Metode Artificial Neural Network dan Double Exponential Smoothing Holts ] Jumlah Pen,” pp. 1–13, 2020.
E. S. Buffa and R. K. Sarin, Manajemen Operasi dan Produksi Modern, Jilid 1, Edisi 1. Binarupa Aksara, 1999.
W. Andriani, Gunawan, and A. E. Prayoga, “Prediksi Nilai Emas Menggunakan Algoritma Regresi Linear,” J. Ilm. Inform. Komput., vol. 28, no. 1, pp. 27–35, 2023, doi: 10.35760/ik.2023.v28i1.8096.
B. Yafitra, P.,Indwiarti., A. Atiqi, “PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MODEL ARIMA DAN ARTIFICIAL NEURAL NETWORK”, doi: 10.21108/indojc.2019.4.2.344.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.