Implementation of Fuzzy Inventory Method and Artificial Neural Network in Determining Safety Inventory of Bag Products
Implementasi Metode Fuzzy Inventory dan Artificial Neural Network dalam Menentukan Persediaan Pengaman Produk Tas
DOI:
https://doi.org/10.21070/ups.3910Keywords:
Prediction, Safety Stock, Fuzzy Invetory, Artificial Neural NetworkAbstract
Sales demand always increases every month shortages due to fluctuating demand, therefore it is best to predict demand in order to determine the right demand and inventory. By using the Artificial Neural Network method, it is hoped that PTK MSME demand can be controlled and able to reduce inventory costs. Meanwhile, the aim of the fuzzy inventory method is to create product inventory levels, to help process storage level inventory in order to reduce storage costs. The relationship between these two methods is to determine what the sales demand will be in the next period and what the safe inventory level will be. So that after forecasting demand, sufficient safety stock calculations will be carried out. The results of this research produced an RMSE from the Artificial Neural Network of 45,031 and a safety inventory of bag products using fuzzy inventory of 43,647 pcs.
Downloads
References
T. Sudrartono et al., Kewirausahaan Umkm Di Era Digital. 2022.
M. Buchori and T. Sukmono, “Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ,” PROZIMA (Productivity, Optim. Manuf. Syst. Eng., vol. 2, no. 1, pp. 27–33, 2018, doi: 10.21070/prozima.v2i1.1290.
R. Risqiati, “Penerapan Metode Single Exponential Smoothing dalam Peramalan Penjualan Benang,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 10, no. 3, pp. 154–159, 2021, doi: 10.30591/smartcomp.v10i3.2887.
M. A. Swasono and A. T. Prastowo, “PENGENDALIAN PERSEDIAAN BARANG,” vol. 2, no. 1, pp. 134–143, 2021.
V. A. Pradana and R. B. Jakaria, “Pengendalian Persediaan Bahan Baku Gula Menggunakan Metode EOQ Dan Just In Time,” Bina Tek., vol. 16, no. 1, p. 43, 2020, doi: 10.54378/bt.v16i1.1816.
C. W. Oktavia and Christine Natalia, “Analisis Pengaruh Pendekatan Economic Order,” J. PASTI (Penelitian dan Apl. Sist. dan Tek. Ind. Tek. Ind. Fak. Tek. Univ. Mercu Buana, vol. XV, no. 1, pp. 103–117, 2021.
A. Fauzi, A. Zakia, B. Abisal Putra, D. Sapto Bagaskoro, R. Nur Pangestu, and S. Wijaya, “Faktor-Faktor Yang Mempengaruhi Dampak Persediaan Barang Dalam Proses Terhadap Pehitungan Biaya Proses: Persediaan Barang Perusahaan, Kalkulasi Biaya Pesanan Dan Pemakaian Bahan Baku (Literature Review Akuntansi Manajemen),” J. Ilmu Hukum, Hum. dan Polit., vol. 2, no. 3, pp. 253–266, 2022, doi: 10.38035/jihhp.v2i3.1037.
M. O. Lussa and I. A. Marie, “Pemanfaatan Artificial Neural Network dan Fuzzy Inventory Model untuk Penentuan Persediaan Pengaman,” Krea-TIF, vol. 7, no. 2, p. 60, 2019, doi: 10.32832/kreatif.v7i2.2235.
J. Brieva, Datamining and its applications, vol. 2, no. 3. 2022. doi: 10.37965/jait.2022.0125.
“Kecerdasan Buatan. N.p. CV. Mitra Cendekia Media, 2022..pdf.”
Vinsensius Galih Adi Kurniawan, “Analisis Persediaan Bahan Baku Pasir Besi Di Pt.Semen Baturaja,” J. Multidisipliner Kapalamada, vol. 1, no. 03 September, pp. 406–411, 2022, [Online]. Available: https://azramedia-indonesia.azramediaindonesia.com/index.php/Kapalamada/article/view/279
A. Ambarwari, Q. Jafar Adrian, and Y. Herdiyeni, “Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 117–122, 2020, doi: 10.29207/resti.v4i1.1517.
R. Nariswari and E. F. Rafikasari, “Perbandingan Metode Analisis Diskriminan, Neural Network, Diskriminan Kernel, Regresi Logistic, Mars Untuk Data Bangkitan (Kombinasi Varians, Overlap Dan Korelasi),” Media Bina Ilm., vol. 13, no. 11, pp. 1763–1774, 2019, doi: 10.33758/mbi.v13i11.273.
F. Di, P. T. Beurata, S. Persada, and A. Saputra, “Perencanaan Pengendalian Inventori Dengan Menggunakan Metode Fuzzy Inventory Control &,” vol. 13, no. 2, 2022.
Z. Sulistiawan and F. Pribadi, “Studi Perancangan Model Penentuan Jumlah Pemesanan dan Reorder Point Menggunakan Fuzzy Inventory Control Terhadap Nilai Persediaan,” Proceeding Heal. Archit., vol. 1, no. 1, pp. 235–244, 2017, [Online]. Available: http://mmr.umy.ac.id/artikel/proceeding/
“Sistem Kendali Logika Fuzzy dan Aplikasinya. N.p. Media Nusa Creative (MNC Publishing), 2022..pdf.”
D. N. Atika and T. Sukmono, “Analysis Of Inventory Control Panel On Demand Using Fuzzy Inventory Control Method [ Analisa Pengendalian Persediaan Panel Terhadap Permintaan Menggunakan Metode Fuzzy Inventory Control ],” pp. 1–12.
R. D. Syahbiddin and D. A. B. L. Mailangkay, “‘Towards Economic Recovery by Accelerating Human Capital and Digital Tranformation’ Perbanas Institute-SNAP_2021_FULL PAPER_41 ANALISIS DATA RISIKO NASABAH PADA BUSINESS CONTROL (BC) TOOLS MENGGUNAKAN RAPID MINER,” Dies Natalis Ke-52 Perbanas Inst. Semin. Nas. Perbanas Inst., pp. 178–189, 2021.
A. Tjolleng, “Buku Pengantar pemrograman MATLAB: Panduan praktis belajar MATLAB,” ReasearchGate, no. August, pp. 1–6, 2017.
I. Trisnaini, T. N. Kumala Sari, and F. Utama, “Identifikasi Habitat Fisik Sungai dan Keberagaman Biotilik Sebagai Indikator Pencemaran Air Sungai Musi Kota Palembang,” J. Kesehat. Lingkung. Indones., vol. 17, no. 1, p. 1, 2018, doi: 10.14710/jkli.17.1.1-8.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.