Forecasting Analysis Sales of Shrimp Cracker Using Artificial Neural Network Method (ANN)
Analisa Peramalan Penjualan Kerupuk Udang Dengan Menggunakan Metode Artificial Neural Network (ANN)
DOI:
https://doi.org/10.21070/ups.26Keywords:
Prediction, Artificial Neural Network, Roat Mean Square ErrorAbstract
PT. KLM often has problems in terms of raw materials. This company often experiences excess or shortage of raw material stock. Constraints on these raw materials can cause several things, including if the company experiences excess raw materials in the warehouse, it will cause disruption to product transportation and if the raw materials are not treated according to existing standards will cause product damage so that it can make the company lose money. In this study also used an artificial neural network method. The data used is shrimp cracker sales data for 4 years from 2018 to 2021 which is taken from the PPIC section. The results of the research carried out are the results of sales predictions for 12 consecutive periods from January to December as many as 3,370, 1,522, 1,545, 1,681, 1,453, 1,737, 1,844, 1,530, 463, 1,515, 1,477, 1,514 with a roat mean square value. error of 0.120.
Downloads
References
V. P. Rau, J. S. B. Sumaraw and M. M. Karuntu, “Analisis Peramalan Permintaan Produk Hollow
Brick Pada UD. Immanuel Air Madidi”, vol. 6, no. 3, pp. 1498-1507, 2018.
A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap Di
PT.X), vol. 10, no.1, pp. 11-20, 2020.
M. Ngantung and A. H. Jan, “Analisis Peramalan Permintaan Obat Antibiotik Pada Apotek Edelweis
Tatelu”, vol. 7, no. 4, pp. 4859-4867, 2018.
M. Jufriyanto, “Peramalan Permintaan Keripik Singkong Dengan Simulasi Monte Carlo”, vol. 6, no.
, pp. 107-113, 2020.
T. S. Nugroho and U. Sukmawati, “Pengaruh Metode Pengeringan Kerupuk Udang Windu (Paneaus
monodon) Terhadap Daya Kembang Dan Nilai Organoleptic”, vol. 1, no. 2, pp. 107-114, 2020.
B. Santoso and A. Umam, Data Mining dan Big Data Analytics, 2018.
M. Afana, J. Ahmed, B. Harb, B. S. Abu-Nasser, and S. S. Abu-Naser, “Artificial Neural Network for
Forecasting Car Mileage per Gallon in The City”, vol. 124, pp. 51-58, 2018.
Y. Umaidah, “Penerapan Algoritma Artificial Neural Network Dalam Prediksi Harga Saham LQ45
PT. Bank Rakyat Indonesia, Tbk”, vol. 8, no. 1, pp. 57-64, 2018.
A. R. M. Izati and H. B. Notobroto, “Penerapan Artificial Neural Network Dalam Peramalan Jumlah
Kunjungan Ibu Hamil (K3)”, vol. 8, no. 1, pp. 11-20, 2019.
A. P. windarto, D. Nasution, A. Wanto et al, “Jaringan Syaraf Tiruan: Algoritma Prediksi dan
Implementasi”, 2020.
A. D. Selasakmida, Tarno, and T. Wuryandari, “Perbandingan Metode Double Exponential Smoothing
Holt dan Fuzzy Time Series Chen Untuk Peramalan Harga Paladium”, vol. 10, no. 3, pp. 325-336,
N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan
Metode Jaringan Syaraf Tiruan Backpropagation”, vol. 2, no. 7, 2018.
A. R. M. Izati and H. B. Notobroto, “Penerapan Artificial Neural Network Dalam Peramalan Jumlah
Kunjungan Ibu Hamil (K3)”, vol. 8, no. 1, pp. 11-20, 2019.
Widiarti, “Klasifikasi Persediaan Barang Menggunakan Algoritma Naïve Bayes Di PT Samyuan
Manunggal Perkasa”, vol. 2, no. 1, 2022.
Downloads
Additional Files
Posted
License
Copyright (c) 2022 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.