Forecasting Product Sales of Crackers Using Artificial Neural Network Method and Double Exponential Smoothing Holts
Peramalan Penjualan Produk Kerupuk Pasir Menggunakan Metode Artificial Neural Network dan Double Exponential Smoothing Holts
DOI:
https://doi.org/10.21070/ups.2366Keywords:
Prediction, Artificial Neural Network, Double Exponential Smoothing Holts, Sand Cracker ManufactureAbstract
UD. XYZ is a producer of sand crackers with fluctuating sales levels the highest fluctuating value of 37% in March 2020. As a result, there was a buildup of 4197 kg raw materials for four years and a shortage of raw materials in August 2021. This research aims to assist companies in predicting sales in the coming period. by proposing the best sales forecasting method as an improvement in anticipating raw material control. The method used in this research is an artificial neural network and double exponential smoothing holts. The results showed that the accuracy of sales forecasting on the artificial neural network has the best accuracy rate of 0.118 compared to double exponential smoothing holts of 11.639. The conclusion the research is proposing improvements to sales prediction methods to anticipate declining sales the next period as well as improvements to raw material ordering planning experience extreme excesses and shortages.
Downloads
References
A. Lusiana, P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X”, Jurnal Teknik Industri, vol. 10, no. 5, pp. 11-20, 2020.
B. W. N. Tantyo, D. Swanjaya, “Perbandingan Antara Metode Holt Winter Dan Backpropagation Pada Model Peramalan Penjualan” Jurnal Seminar Nasional Inovasi Teknologi, vol. 3, no, 1, pp. 174-181, 2021.
A. Dzulfikar, Iswanto, N. Ramsari, S. Sutjiningtyas, Hernawati, “Implementasi Peramalan Penjualan Produk di PT. Prima Per Tradea Utama Menggunakan Metode Artificial Neural Network”, Jurnal Teknologi Informasi dan Komunikasi, vol. 11, no. 2, pp.10-11, 2021.
I. Solikin, S. Hardini, “Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Metrojaya Komputer”, Jurnal Pengembangan, vol. 4, no. 2, pp. 100-105, 2019, doi: 10.3059/jpt.v4i2.1373.
J. R. Saragih, M. B. S. Saragih, A. Wanto, “Analisis Algoritma Backpropagation Dalam Prediksi Nilai Ekspor (Juta USD)”, Jurnal Pendidikan Teknologi dan Kejuruan, vol. 15, no. 2, pp. 254-264, 2018, doi: https://ejournal.undiksha.ac.id/index.php/JPTK/issue/view/851.
I. Yulian, D. S. Anggraeni, Q. Aini. “Penerapan Metode Trend Moment Dalam Forecasting Penjualan Produk CV. Rabbani Asyisa”, Jurnal Teknologi dan Sistem Informasi, vol. 6, no. 2, pp. 193-200, 2020, doi: https://doi.org/10.33330/jurteksi.v6i2.443.
E. E. Pratama, H. Sastypratiwi, Yulianti, “ Analisis Kecenderungan Informasi Terkait Covid-19 Berdasarkan Big Data Sosial Media Dengan Menggunakan Metode Data Mining”, Jurnal Informasi Polinema, vol. 7, no. 2, pp. 1-6, 2021.
J. Han, M. Kamber, J. Pei. “ Data Mining Concepts And Techniques” Edisi ke-3, USA: Morgan Kaufmann, 2006.
Z. Nabila, A. R. Isnain, Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means”, Jurnal Teknologi dan Sistem Informasi, vol. 2, no. 2, pp. 100-108, 2021.
B. Santosa, A. Umam, “Data Mining dan Big Data Analytics”, Edisi ke-2, Yogyakarta: Penebar Media Pustaka, 2018.
H. D. Wijaya, S. Dwiasnati, “Implementasi Data Mining Dengan Algoritma Naïve Bayes Pada Penjualan Obat”, Jurnal Informatika, vol. 7, no. 1, pp. 1-7, 2020.
M. N. Zain, “Algoritma Artificial Neural Network Dalam Klasifikasi Chest X-Rays Pasien Covid-19”, Jurnal Riset Statistika, vol. 2, no. 2, pp. 137-144, 2022. Doi: https://doi.org/10.29313/jrs.v2i2.1426.
M. F. Mahfuzh, R. V. Yuliantari, “Analisis Penerapan Artificial Neural Network Algoritma Propagasi Balik Untuk Meramalkan Harga Saham Pada Bursa Efek Indonesia”, vol. 6, no. 1, pp. 1-3, 2022.
N. F. Hasan, Kusrini, H. A. Fatta, “Peramalan Jumlah Penjualan Menggunakan Jaringan Syaraf Tiruan Backpropagation Pada Perusahaan Air Minum Dalam Kemasan”, Jurnal Teknik Informatika dan Sistem Informasi, vol. 5, no. 2, pp. 179-188, 2019.
A. Ambarwati, Q. J. Adrian, Y. Herdiyeni, ”Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning Untuk Identifikasi Tanaman”, Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 4, no. 1, pp. 117-122, 2019, http://jurnal.iaii.or.id.
M. Y. Habibi, E. Riksakomara, “Peramalan Harga Garam Konsumsi Menggunakan Artificial Neural Network Feedforward Backpropagation (Studi Kasus: PT. Garam, Rembang, Jawa Tengah), Jurnal Teknik, vol. 6, no. 2, pp. 306-310, 2018
V. N. Oktavianty, T. Sukmono, “Optimalisasi Penentuan Biaya Minimum Pada Pengendalian Persediaan Bahan Baku Dengan Menggunakan Metode Dynamic Programming (Studi Kasus di PT. XYZ)”, Jurnal Spektrum Industri, vol. 18, no. 1, pp. 18-22, 2020, doi: http://dx.doi.org/10.12928/si.v18i1.10972
C.V. Hudiyanti, F. A. Bachtiar, B. D. Setiawan, “Perbandingan Double Moving Average dan Double Exponential Smoothing Untuk Peramalan Jumlah Kedatangan Wisata Mancanegara di Bandara Ngurah Rai”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2667-2672, 2019.
M. A. Putri, T. Sukomo, “Analisa Peramalan Penjualan Kerupuk Udang Dengan Menggunakan Metode Artificial Neural Network (ANN)”, pp. 1-9, 2022.
Humairo, D. P. Habsari, I. Purnamasari, D. Desi Yuniarti, “Peramalan Menggunakan Metode Double Exponential Smoothing Dan Verifikasi Hasil Peramalan Menggunakan Grafik Pengendalian Tracking Signal”, Jurnal Ilmu Matematika dan Terapan, vol. 14, no.1, pp. 013-022, 2020, doi: https://doi.org/10.30598barekengvol14iss1pp013-022.
K. R. P. Irawan, T. Sukmono, “Planning Total Veener Production PT XYZ”, Jurnal Procedia Of Engineering And Life Science, vol. 1, no.2, 2021.
D. Kusbiamto, Y. Ariyanto, M. R. T. Billah, ”Implementasi Metode Triple Exponential Smoothing Pada Sistem Peramalan Permintaan Produk Furniture”, Jurnal Informatika Aplikatif Polinema, 2020.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.