Preprint has been published in a journal as an article
Preprint / Version 1

Sentiment Analysis of Lokapala Game Reviews on Google Play Using the SVM Algorithm

Analisis Sentimen Ulasan Game Lokapala pada Google Play Menggunakan Algoritma SVM

##article.authors##

DOI:

https://doi.org/10.21070/ups.9769

Keywords:

Lokapala, Sentiment, User Review, Support Vector Machine, Google Play Store

Abstract

This study aims to analyze user sentiment towards the Lokapala game through reviews collected from the Google Play Store. Lokapala is a local MOBA game developed by Anantarupa Studios that integrates Indonesian cultural elements. A quantitative approach is employed using the Support Vector Machine (SVM) algorithm to classify user reviews into positive and negative sentiments. Data were collected using the google-play-scraper library and preprocessed through several stages, including cleaning, case folding, word normalization using kamuskatabaku.xlsx, tokenizing, stopword removal, and stemming with the Sastrawi library. Reviews were labeled based on user ratings and split into training and testing datasets. Model testing results show an accuracy of 83%, with the highest precision of 0.85 for the positive class, recall of 0.93, and f1-score of 0.89. Additionally, WordCloud visualization revealed frequently occurring words such as "bagus" (good), "main" (play), "tolong" (please), and "banget" (very), reflecting both praise and technical complaints from users.

Downloads

Download data is not yet available.

References

R. Rahmadani, A. Rahim, and R. Rudiman, “ANALISIS SENTIMEN ULASAN ‘OJOL THE GAME’ DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES DAN MODEL EKSTRAKSI FITUR TF-IDF UNTUK MENINGKATKAN KUALITAS GAME,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4988.

B. C. Pratama, A. F. Yogananti, and R. Artikel, “USABILITY USER INTERFACE PADA GAME LOKAPALA: SAGA OF THE SIX REALMS INFO ARTIKEL ABSTRAK,” 2021.

V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, and Ahmad Hanif Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” J. Buana Inform., vol. 14, no. 01, pp. 40–49, Apr. 2023, doi: 10.24002/jbi.v14i01.6909.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.

R. N. Rahman, A. Rahim, and W. J. Pranoto, “Analisis Sentimen Ulasan Game eFootball 2024 Pada Playstore menggunakan Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 13, no. 01, pp. 38–44, 2025, [Online]. Available: https://doi.org/10.33884/jif.v13i01.9913

B. L. Supriyatna and F. P. Putri, “Optimized support vector machine for sentiment analysis of game reviews,” Int. J. Informatics Commun. Technol., vol. 13, no. 3, pp. 344–353, 2024, doi: 10.11591/ijict.v13i3.pp344-353.

A. Yasin, R. Fatima, A. N. Ghazi, and Z. Wei, “Python data odyssey: Mining user feedback from google play store.,” Data Br., vol. 54, p. 110499, Jun. 2024, doi: 10.1016/j.dib.2024.110499.

A. F. Aufar and M. A. Rosid, “Impact of Text Data Preprocessing for Review Analysis E-Wallet Application on Google Play Store,” Aug. 16, 2024. doi: 10.21070/ups.6279.

U. Singh, A. Saraswat, H. K. Azad, K. Abhishek, and S. Shitharth, “Towards improving e-commerce customer review analysis for sentiment detection.,” Sci. Rep., vol. 12, no. 1, p. 21983, Dec. 2022, doi: 10.1038/s41598-022-26432-3.

E. Lunando and A. Purwarianti, “Indonesian social media sentiment analysis with sarcasm detection,” in 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), IEEE, Sep. 2013, pp. 195–198. doi: 10.1109/ICACSIS.2013.6761575.

A. F. Panjalu, S. Alam, and M. I. Sulistyo, “Moba Game Review Sentiment Analysis Using Support Vector Machine Algorithm,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, pp. 131–137, Aug. 2023, doi: 10.33387/jiko.v6i2.6388.

D. Safryda Putri and T. Ridwan, “ANALISIS SENTIMEN ULASAN APLIKASI POSPAY DENGAN ALGORITMA SUPPORT VECTOR MACHINE,” J. Ilm. Inform., vol. 11, no. 01, pp. 32–40, Mar. 2023, doi: 10.33884/jif.v11i01.6611.

B. W. Sari and F. F. Haranto, “IMPLEMENTASI SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP PELAYANAN TELKOM DAN BIZNET,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, Sep. 2019, doi: 10.33480/pilar.v15i2.699.

I. F. Rozi, R. Ardiansyah, and N. Rebeka, “Penerapan Normalisasi Kata Tidak Baku Menggunakan Levenshtein Distance pada Analisa Sentimen Layanan PT. KAI di Twitter,” Semin. Inform. Apl., pp. 106–112, 2019, [Online]. Available: http://jurnalti.polinema.ac.id/index.php/SIAP/article/view/563

K. Khairunnisa, S. K. Dewi, D. D. Rahmawati, and A. P. Sari, “ANALISIS SENTIMEN KOMENTAR PADA POSTINGAN INSTAGRAM AKUN ‘STANDWITHUS’ MENGGUNAKAN KLASIFIKASI NAIVE BAYES,” J. Ilm. Inform., vol. 12, no. 02, pp. 191–199, Sep. 2024, doi: 10.33884/jif.v12i02.9263.

S. J. Angelina, A. Bijaksana, P. Negara, and H. Muhardi, “Analisis Pengaruh Penerapan Stopword Removal Pada Performa Klasifikasi Sentimen Tweet Bahasa Indonesia,” JUARA (Jurnal Apl. dan Ris. Inform., vol. 02, no. 1, pp. 165–173, 2023, doi: 10.26418/juara.v2i1.69680.

D. D. Jasman Pardede, “Perbandingan Algoritma Stemming Porter, Sastrawi, Idris, Dan Arifin & Setiono Pada Dokumen Teks Bahasa Indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 12, no. 1, pp. 69–76, 2025, doi: 10.25126/jtiik.2025128860.

B. Sidupa and C. Dewi, “SENTIMEN ANALISIS TERHADAP APLIKASI TIKTOK MENGGUNAKAN SUPPORT VECTOR CLASSIFICATION,” J. Mnemon., vol. 8, pp. 1–8, 2025, doi: 10.36040/mnemonic.v8i1.12635.

V. Muslimah et al., “Kemajuan dalam Ilmu Informatika Dari Decision Support System Menuju Artificial Intelligence,” pp. 89–95, 2024.

F. Kusumawati, “Tren Virtual Hotel Operator (VHO) di Yogyakarta,” Media Wisata, vol. 18, no. 1, pp. 90–100, May 2021, doi: 10.36276/mws.v18i1.80.

Posted

2026-01-26