Preprint has been published in a journal as an article
Preprint / Version 1

Implementation of the Support Vector Machine Algorithm for Predicting Voter Participation Based on Village Development Index Data in the Tapal Kuda Region

Penerapan Algoritma Support Vector Machine dalam Memprediksi Tingkat Partisipasi Pemilu Berdasarkan Data Indeks Desa Membangun pada Wilayah Tapal Kuda

##article.authors##

DOI:

https://doi.org/10.21070/ups.9670

Keywords:

Support Vector Machine, Machine Learning, Village Development Index, Voter Participation

Abstract

The level of voter participation reflects not only the strength of democracy but also the social awareness of the community. In East Java’s Tapal Kuda region, this participation varies significantly between villages, influenced by diverse development conditions. This study explores the use of the Village Development Index (Indeks Desa Membangun/IDM) to predict voter participation through the Support Vector Machine (SVM) algorithm. Using the 2024 IDM dataset consisting of thousands of village-level records, several indicators were selected to represent social, economic, and infrastructural aspects. The SVM model produced an accuracy of 76%, with precision and recall values of 0.75 and 0.76 respectively. These results indicate that the model is more responsive in detecting high participation patterns, suggesting that village development and access to basic services contribute significantly to civic engagement. Therefore, the application of SVM on IDM data can be utilized as a data-driven approach to support strategies aimed.

Downloads

Download data is not yet available.

References

K. Kunci, “The Indonesian Journal of Computer Science,” vol. 14, no. 2, pp. 3105–3118, 2025.

A. W. Anggraeni, A. S. Fitrani, and A. Eviyanti, “Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 1, pp. 21–27, 2024, doi: 10.29408/edumatic.v8i1.24838.

Y. Raharja, A. S. Fitrani, and R. Dijaya, “Klasifikasi Tingkat Partisipasi Pemilu Berdasarkan Sektor Industri Menggunakan Algoritma Naïve Bayes,” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 7, no. 1, pp. 135–143, 2024, doi: 10.37600/tekinkom.v7i1.1204.

M. J. Siddiq et al., “ANALISIS SENTIMEN MASYARAKAT TERHADAP PILKADA 2024 DI MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAÏVE,” vol. 13, no. 2, pp. 609–622, 2025.

D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Kernel Gaussian Rbf Untuk Prediksi Partisipasi Pemilu Terhadap Demografi Kota Surabaya,” Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 1, p. 36, 2022, doi: 10.21927/ijubi.v5i1.2259.

A. Akram et al., “MINI-BATCH K-MEANS CLUSTERING UNTUK PENGELOMPOKAN,” pp. 235–244, 2024.

Y. Izamahendra and M. Subhan, “DESA PARIAMAN TIMUR BERDASARKAN INDEKS DESA MEMBANGUN 2023,” vol. 13, no. 2, pp. 204–211, 2025.

A. Sentimen, A. Pemilu, and A. N. Bayes, “SWADHARMA ( JEIS ),” vol. 05, pp. 131–139, 2025.

A. S. Kirana, R. Roeswidiah, and A. Pudoli, “ANALISIS SENTIMEN PADA MEDIA SOSIAL TERHADAP LAYANAN SAMSAT DIGITAL NASIONAL,” vol. 8, pp. 53–63, 2025.

D. M. Chulloh, A. S. Fitrani, I. R. Indra Astutik, and A. Eviyanti, “Uji Akurasi K-Means dalam Prediksi Partisipasi Pemilu pada Demografi Wilayah Kabupaten Pasuruan,” Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, p. 201, 2024, doi: 10.35889/jutisi.v13i1.1753.

R. A. Kurniawan, F. I. N. G, and M. R. Pribadi, “Sentimen Analisis Presiden Terpilih Menggunakan Algoritma Support Vector Machine,” The Indonesian Journal of Computer Science Research, vol. 3, no. 14, pp. 68–73, 2024.

E. F. Laili et al., “KOMPARASI ALGORITMA DECISION TREE DAN SUPPORT VECTOR MACHINE ( SVM ) DALAM,” vol. 8, no. 1, pp. 67–76, 2025.

D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Kernel Gaussian Rbf Untuk Prediksi Partisipasi Pemilu Terhadap Demografi Kota Surabaya,” Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 1, p. 36, 2022, doi: 10.21927/ijubi.v5i1.2259.

A. W. Anggraeni, A. S. Fitrani, and A. Eviyanti, “Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 1, pp. 21–27, 2024, doi: 10.29408/edumatic.v8i1.24838.

A. S. Kirana, R. Roeswidiah, and A. Pudoli, “ANALISIS SENTIMEN PADA MEDIA SOSIAL TERHADAP LAYANAN SAMSAT DIGITAL NASIONAL,” vol. 8, pp. 53–63, 2025.

Posted

2026-01-09