Preprint has been published in a journal as an article
Preprint / Version 1

Classification of the Village Development Index in East Java Province 2024 Using Backpropagation Neural Network and Naïve Bayes

Klasifikasi Indeks Desa Membangun Provinsi Jawa Timur 2024 Menggunakan Jaringan Saraf Tiruan Backpropagation dan Naïve Bayes

##article.authors##

DOI:

https://doi.org/10.21070/ups.9592

Keywords:

Village Development Index (IDM), Classification, Naïve Bayes, Backpropagation, Machine Learning

Abstract

The Village Development Index (Indeks Desa Membangun/IDM) is an important instrument for measuring village development. This study compares two classification methods, Backpropagation and Naïve Bayes, in determining village status using the 2024 IDM dataset of East Java. The evaluation was carried out using accuracy, precision, recall, F1-score, and confusion matrix metrics. The results indicate that Naïve Bayes is more stable, achieving an accuracy of 0.80 on the training set and slightly increasing to 0.81 on the test set, which demonstrates good generalization ability. In contrast, Backpropagation achieved 0.7802 accuracy on the training set but dropped to 0.7540 on the test set, showing less consistent performance, particularly across several categories. In conclusion, simpler methods such as Naïve Bayes can outperform more complex models in regional datasets that are relatively small with linear features, while Backpropagation is more suitable for national-scale data with larger size and more complex non-linear patterns.

Downloads

Download data is not yet available.

References

N. Sari and T. Oktavianor, “Indeks Desa Membangun (Idm) Di Kabupaten Barito Kuala,” J. Adm. Publik dan Pembang., vol. 2, no. 1, p. 36, 2021, doi: 10.20527/jpp.v2i1.2768.

A. N. Astika and N. Sri Subawa, “Evaluasi Pembangunan Desa Berdasarkan Indeks Desa Membangun,” J. Ilm. Muqoddimah J. Ilmu Sos. Polit. dan Hummanioramaniora, vol. 5, no. 2, p. 223, 2021, doi: 10.31604/jim.v5i2.2021.223-232.

Shafira Agnia Latfalia and Reny Rian Marliana, “Klasifikasi Status Indeks Desa Membangun Jawa Barat Menggunakan Algoritma XGBoost,” J. Ris. Stat., pp. 75–82, 2024, doi: 10.29313/jrs.v4i2.5011.

Ahmad Zaenudin, Apri Budianto, and Aini Kusniawati, “Model Strategi Peningkatan Indeks Desa Membangun (IDM) di Kabupaten Ciamis,” Maeswara J. Ris. Ilmu Manaj. dan Kewirausahaan, vol. 1, no. 1, pp. 19–31, 2023, doi: 10.61132/maeswara.v1i1.1532.

W. Guswanti, I. Afrianty, E. Budianita, and F. Syafria, “Perbandingan Inisialisasi Bobot Random dan Nguyen-Widrow Pada Backpropagation Dalam Klasifikasi Penyakit Diabetes,” J. Inform. J. Pengemb. IT, vol. 10, no. 2, pp. 323–332, 2025, doi: 10.30591/jpit.v10i2.8618.

Y. Yin et al., “IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset,” J. Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00694-8.

S. Raschka, “Naive Bayes and Text Classification I - Introduction and Theory,” pp. 1–20, 2017, [Online]. Available: http://arxiv.org/abs/1410.5329

G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” pp. 338–345, 2013, [Online]. Available: http://arxiv.org/abs/1302.4964

A. W. Anggraeni, A. S. Fitrani, and A. Eviyanti, “Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 21–27, 2024, doi: 10.29408/edumatic.v8i1.24838.

D. Bertsimas, A. Delarue, and J. Pauphilet, “Beyond Impute-Then-Regress: Adapting Prediction to Missing Data,” pp. 1–24, 2021, [Online]. Available: http://arxiv.org/abs/2104.03158

M. Cilimkovic, “Neural Networks and Back Propagation Algorithm,” Inst. Technol. Blanchardstown, Blanchardst. Road North Dublin, vol. 15, pp. 3–7, 2015.

D. Oleh et al., “Implementasi Metode Klasifikasi Naïve Bayes Dalam Menentukan Produk Laptop Terlaris Proposal Tugas Akhir,” 2022.

M. Habib, F. Arif, S. Fitrani, A. Wahyu, and A. Suhendro, “Model Analysis of the 2019 Election Participation Level Against Demographics in Pamekasan Regency Using the Naive Bayes Method Analisis Model Pada Tingkat Partisipasi Pemilu 2019 Terhadap Demografi Di Kabupaten Pamekasan Menggunakan Metode Naive Bayes,” pp. 1–11, 2019.

A. F. Daru, M. B. Hanif, and E. Widodo, “Improving Neural Network Performance with Feature Selection Using Pearson Correlation Method for Diabetes Disease Detection,” JUITA J. Inform., vol. 9, no. 1, p. 123, 2021, doi: 10.30595/juita.v9i1.9941.

Y. Raharja, A. S. Fitrani, and R. Dijaya, “Klasifikasi Tingkat Partisipasi Pemilu Berdasarkan Sektor Industri Menggunakan Algoritma Naïve Bayes,” J. Tek. Inf. dan Komput., vol. 7, no. 1, p. 135, 2024, doi: 10.37600/tekinkom.v7i1.1204.

H. Abidin, A. S. Fitrani, H. Setiawan, and U. Indahyanti, “Prediction of Voter Participation Levels Using the Naive Bayes Algorithm Based on the Village Development Index Data in Sidoarjo Regency [ Prediksi Tingkat Partisipasi Pemilu Menggunakan Algoritma Naive Bayes Berdasarkan Data Indeks Desa Membangun di Kabu,” no. Idm, pp. 1–10.

L. Sasse et al., “On Leakage in Machine Learning Pipelines,” 2023, [Online]. Available: http://arxiv.org/abs/2311.04179

Syaharuddin, Fatmawati, and H. Suprajitno, “Investigations on Impact of Feature Normalization Techniques for Prediction of Hydro-Climatology Data Using Neural Network Backpropagation with Three Layer Hidden,” Int. J. Sustain. Dev. Plan., vol. 17, no. 7, pp. 2069–2074, 2022, doi: 10.18280/ijsdp.170707.

Syaharuddin, Fatmawati, and H. Suprajitno, “The Formula Study in Determining the Best Number of Neurons in Neural Network Backpropagation Architecture with Three Hidden Layers,” J. RESTI, vol. 6, no. 3, pp. 397–402, 2022, doi: 10.29207/resti.v6i3.4049.

M. D. Yalidhan, “Implementasi Algoritma Backpropagation Untuk Memprediksi Kelulusan Mahasiswa,” Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 2, p. 169, 2018, doi: 10.20527/klik.v5i2.152.

K. Nakamura, B. Derbel, K. J. Won, and B. W. Hong, “Learning-rate annealing methods for deep neural networks,” Electron., vol. 10, no. 16, pp. 1–12, 2021, doi: 10.3390/electronics10162029.

A. Demirkaya, J. Chen, and S. Oymak, “Exploring the Role of Loss Functions in Multiclass Classification,” 2020 54th Annu. Conf. Inf. Sci. Syst. CISS 2020, pp. 0–4, 2020, doi: 10.1109/CISS48834.2020.1570627167.

Y. D. Lestari, “Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Backropagation,” J. ISD, vol. 2, no. 1, pp. 2477–863, 2017.

R. Rahmiyanti, S. Defit, and Y. Yunus, “Prediksi dan Klasifikasi Buku Menggunakan Metode Backpropagation,” J. Inf. dan Teknol., vol. 3, pp. 109–114, 2021, doi: 10.37034/jidt.v3i3.116.

A. Agarwala, J. Pennington, Y. Dauphin, and S. Schoenholz, “Temperature check: theory and practice for training models with softmax-cross-entropy losses,” Trans. Mach. Learn. Res., vol. 2023-March, 2023.

C. Li, K. Liu, and S. Liu, “A Survey of Loss Functions in Deep Learning,” Mathematics, vol. 13, no. 15, p. 2417, 2025, doi: 10.3390/math13152417.

A. Goodfellow, Ian and Bengio, Yoshua and Courville, Deep Learning. MIT Press, 2016. [Online]. Available: https://www.deeplearningbook.org/

U. Khasanah, “Klasifikasi Multi Class Menggunakan Metode Backpropagation Neural Network Untuk Prediksi Stunting Pada Balita,” MathVision J. Mat., vol. 7, no. 1, pp. 13–21, 2025, doi: 10.55719/mv.v7i1.1650.

F. R. Dewi, A. Eviyanti, A. S. Fitrani, I. Ratna, and I. Astutik, “Classification of Book Borrower Patterns Based on Profession Using the Naïve Bayes Algorithm Klasifikasi Pola Peminjam Buku Bedarsarkan Profesi Menggunakan Algoritma Naïve Bayes,” pp. 1–15.

N. A. Utami and A. W. Wijayanto, “Classification of Village Development Index at Regency/Municipality Level Using Bayesian Network Approach with K-Means Discretization,” J. Apl. Stat. Komputasi Stat., vol. 14, no. 1, pp. 95–106, 2022, doi: 10.34123/jurnalasks.v14i1.390.

F. Latuconsina, M. S. Noya van Delsen, and Yudistira, “Klasifikasi Menggunakan Metode Support Vector Machine (SVM) Multiclass pada Data Indeks Desa Membangun (IDM) di Provinsi Maluku,” J. Math. Comput. Stat., vol. 7, no. 2, pp. 380–395, 2024, doi: 10.35580/jmathcos.v7i2.3624.

Posted

2025-10-27