The Effect of Guide Blade Angle on The Perfomance of a Reaction Type Steam Turbine Prototype
Pengaruh Sudut Sudu Pengarah Pada Performa Prototipe Turbin Uap Tipe Reaksi
DOI:
https://doi.org/10.21070/ups.9202Keywords:
Guide blade angle, Turbine torque, Turbine efficiencyAbstract
Electrical energy is essential to human activity, particularly when it comes from coal-fired power plants. Steam energy is transformed into mechanical energy using steam turbines. This study demonstrates how changes in the guide blade angle affect reaction-type steam turbine torque, speed, and thermal efficiency. It is anticipated that the findings will serve as the foundation for improving turbine performance through guide blade design optimization. The torque and efficiency of a reaction-type steam turbine with a 5-liter boiler capacity are investigated in this study in relation to changes in the guide blade angle (30°, 40°, and 50°) and steam pressure (40–60 psi). The test system is equipped with a pressure gauge, flowmeter, tachometer, and brake. Calculations include mass flow rate, turbine power, steam power, torque, and efficiency to determine the optimal blade angle.
Downloads
References
M. Luther, “Journal of Fundamentals of Renewable Energy and Applications Steam Power Plants and the Operation of Rankine Cycle,” vol. 13, no. 1000303, pp. 10–11, 2023, doi: 10.35248/2090-4541.23.13.303.
H. Dwi Kusuma and M. T. Su, “Analisa Pengaruh Laju Aliran Partikel Padat Terhadap Sudu-Sudu Turbin Reaksi Pada Sistem Pembangkit Listrik Tenaga Uap Menggunakan Cfd,” J. Tek. Mesin S-1, vol. 2, no. 4, pp. 488–495, 2014.
W. Wisnaningsih, “Perencanaan Turbin Uap Penggerak Generator Dengan Daya 100 Mw Pada 3000 Rpm,” Tek. Sains J. Ilmu Tek., vol. 4, no. 1, pp. 33–40, 2019, doi: 10.24967/teksis.v4i1.637.
B. Wahyudi, “Analisis Efisiensi Turbin Uap terhadap Kapasitas Listrik Pembangkit,” J. Tek. Elektro, vol. 2–9, no. 2, pp. 33–36, 2019.
M. Fadil et al., “Pemeliharaan Sistem Pelumasan Pada Turbin Uap Di PLTU XYZ,” Perwira J. Sci. Eng., vol. 4, no. 2, pp. 58–63, 2024, doi: 10.54199/pjse.v4i2.309.
I. Hadi, “Analisis efisiensi turbin uap sebagai penggerak generator pada pabrik kelapa sawit,” J. Tek. Mesin, pp. 1–42, 2021.
Milahussholihah, “Analisa Perbandingan Performa Turbin Uap Sebelum Dan Setelah Overhaul Pada Beban 175 MW Di PLTU Unit 4 PT. PJB Up Gresik,” Inst. Teknol. Sepuluh Nop., 2018.
M. F. UJUNG, “ANALISIS KINERJA TURBIN UAP MINI DENGAN TEKANAN UAP 500 kPa,” Tek. mesin, 2020.
R. Gunawan, “ANALISIS KINERJA PEMBANGKIT LISTRIK JENIS TURBIN WHIRLPOOL MENGGUNAKAN 5 BILAH SUDU,” Tek. mesin, 2023.
W. D. Prasetyo, Rancang Bangun Turbin Vortex Skala Kecil Dan Pengujian Pengaruh Bentuk Penampang Sudu Terhadap Daya. 2018.
K. Rogowski and J. Pawlicki, “Numerical analysis of the steam flow past the turbine blade stage,” J. Mach. Eng., vol. 17, no. 2, pp. 103–110, 2017.
Y. S. Pramesti, “Analisa pengaruh sudut sudu terhadap kinerja turbin kinetik poros horisontal dan vertikal,” J. Mesin Nusant., vol. 1, no. 1, p. 51, 2018, doi: 10.29407/jmn.v1i1.12296.
A. Mehta et al., “Processing and Advancements in the Development of Thermal Barrier Coatings-12-01318-V2 (1).Pdf,” Coatings, vol. 12, no. 1318, pp. 1–31, 2022.
T. Bai, J. Liu, W. Zhang, and Z. Zou, “Effect of surface roughness on the aerodynamic performance of turbine blade cascade,” Propuls. Power Res., vol. 3, no. 2, pp. 82–89, 2014, doi: 10.1016/j.jppr.2014.05.001.
G. Bzymek, M. Bryk, S. Kruk-Gotzman, and P. J. Ziółkowski, “Computational Fluid Dynamics Study of Erosion on 900 MW Steam Turbine ND-45 Blades Using 3D Scanning,” Materials (Basel)., vol. 17, no. 19, 2024, doi: 10.3390/ma17194884.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
