Predicting Snack Food Production (Pentol) Using Fuzzy Logic
Prediksi Produksi Makanan Ringan(Pentol) Menggunakan Logika Fuzzy
DOI:
https://doi.org/10.21070/ups.9158Keywords:
fuzzy logic, Mamdani, meatball production, income, demand, inventoryAbstract
Fluctuating market demand and limited inventory are challenges in determining the optimal amount of
production, especially for small businesses such as meatball snack production. This study aims to determine the
addition of meatball production using the Mamdani fuzzy logic method. This system uses three input variables:
income, inventory, and sales demand, and one output in the form of the recommended amount of production. Each
variable is modeled with a triangular membership function. The case study shows that with an income of Rp650,000,
an inventory of 600 pieces, and a demand of 1,500 pieces, the fuzzy system recommends an additional production of
500 pieces. These results prove that the Mamdani fuzzy method is effective in helping production decision making
amidst subjective or vague data uncertainty
Downloads
References
Y. A. Adoe, K. Letelay, and E. S. Y. Pandie, “PENERAPAN METODE FUZZY TSUKAMOTO DALAM PENENTUAN JUMLAH PRODUKSI ROTI (STUDI KASUS: DWI JAYA BAKERY KUPANG),” J. Difer., vol. 04, 2022.
M. Afdhal, D. Saputra, and W. Safitri, “SISTEM INFORMASI PREDIKSI ANGKA PRODUKSI PADA NILA,” vol. 9, no. 1, pp. 9–16, 2021.
R. N. Al-faruq and H. Hindarto, “Prediksi Produksi Rokok Klobot Menggunakan Metode Logika Fuzzy Mamdani,” no. 2, pp. 1–14, 2024.
M. Arman, “No Title,” PENERAPAN FUZZY INFERENCE Syst. Metod. TSUKAMOTO UNTUK PREDIKSI JUMLAH PRODUKSI KURSI Plast. Mustar, vol. 12, no. 1, pp. 8–14, 2024.
R. Ilham and H. Fryonanda, “Perancangan Prediksi Produksi Teh Menggunakan Metode Fuzzy Tsukamoto Berbasis Web,” vol. 4, no. 1, pp. 16–22, 2023.
Z. N. Jati, “Prediksi Produksi Bawang Merah di Kota Yogyakarta menggunakan Metode Fuzzy Mamdani,” vol. 2, no. 2, 2023.
E. W. Mudasir, S. H. Sitorus, and U. Ristian, “APLIKASI PREDIKSI PRODUKSI PAKAIAN MENGGUNAKAN METODE FUZZY MAMDANI ( STUDI KASUS CMS PRODUCTION ),” vol. 09, no. 03, 2021.
E. Panggabean, “Jurnal Sistem Informasi dan Teknologi Jaringan Prediksi Jumlah Produksi Donat Pada Donat Kawan Mamak Menggunakan Metode Fuzzy Tsukamoto,” vol. 1, pp. 13–19, 2025.
Y. G. Purba and D. Avianto, “Implementation of Fuzzy Logic Tsukamoto to Optimize the Quantity of Packaged Ice Cube Production Implementasi Logika Fuzzy Tsukamoto untuk Optimasi Jumlah Produksi Es Batu Kemasan,” vol. 5, no. January, pp. 119–129, 2025.
N. Putu, J. Pradnyawati, Y. D. Handarkho, and P. Ardanari, “Implementasi Logika Fuzzy Metode Tsukamoto Berbasis Web Untuk Prediksi Jumlah Produksi Jajan Banten,” no. 1,
pp. 9–16.
D. Ramadhan, M. A. Prawira, F. S. Hutagalung, and Y. Sary, “PREDIKSI PRODUKSI MATERIAL DALAM PEMBUATAN MESIN BOILER MENGGUNAKAN METODE FUZZY TSUKAMOTO ( STUDI KASUS : PT . ATMINDO TBK ),” vol. 8, no. 6, pp. 12649–12654, 2024.
D. Rifai and F. Fitriyadi, “Penerapan Logika Fuzzy Sugeno dalam Keputusan Jumlah Produksi Berbasis Website,” 2023.
Y. R. Sari, “Penerapan Logika Fuzzy Metode Mamdani dalam Menyelesaikan Masalah Produksi Garam Nasional,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1,
pp. 341–356, 2021, doi: 10.35957/jatisi.v8i1.647.
M. Soleh, D. Sartika, and U. Dehasen, “PENERAPAN LOGIKA FUZZY DALAM PREDIKSI JUMLAH PRODUKSI DI PT . INOCYCLE TECHNOLOGY TBK,” vol. 4307, no. 4, pp. 1440–1445, 2024.
M. Surohadi et al., “Prediksi produksi dompet kulit sintetis menggunakan metode fuzzy mamdani,” pp. 207–214, 2020.
{Bibliography
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
