Preprint has been submitted for publication in journal
Preprint / Version 1

Analysis Key Performance Indicator Using the ANN Method to Assess Employee Performance at PT. Nisfu Advertising Communication

Analisis Key Performance Indicator Sebagai alat pengukur kinerja karyawan PT. Nisfu Advertising Communication Menggunakan Metode ANN

##article.authors##

DOI:

https://doi.org/10.21070/ups.9136

Keywords:

Artificial Neural Network, Key Performance Indicator, Sales Rate, Sales Volume

Abstract

This study aims to analyze and predict employee Key Performance Indicators (KPIs) at PT. Nisfu Advertising Communications using the Artificial Neural Network (ANN) method. The model was developed based on two main input variables, namely Sales Value (X1) and Sales Quantity (X2), which are indicators of employee productivity and performance in the marketing field. Employee sales data for 2024 was used as the dataset, with a total of 136 samples. The results of training and testing the ANN model showed excellent predictive performance, indicated by a coefficient of determination (R²) value close to 1, as well as low error values ​​in evaluation metrics such as MSE, RMSE, MAE, and MAPE. Sensitivity analysis showed that the variable X1 has a correlation of 0.9991, and X2 is 0.9984, indicating that both variables have a significant influence on the KPI value. Thus, the ANN model is proven to be effective in predicting employee performance quantitatively and objectively.

Downloads

Download data is not yet available.

References

F. Danang, D. Asmoro, and S. Ningtiyas Nazar, “Pengaruh Key Performance Indicator Dan Sistem Pengendalian Manajemen Terhadap Kinerja Karyawan,” Jurnal Akuntansi Keuangan dan Bisnis, vol. 2, no. 3, p. 2024, 2024, [Online]. Available: https://jurnal.ittc.web.id/index.php/jakbs/index

Anita Sukmawati, Sri Sundari, and Marisi Pakpahan, “Faktor Yang Memengaruhi Kinerja Karyawan,” Maeswara : Jurnal Riset Ilmu Manajemen dan Kewirausahaan, vol. 2, no. 1, pp. 239–248, Dec. 2023, doi: 10.61132/maeswara.v2i1.622.

R. Haholongan, S. H. Sakti, A. L. Diana, and M. Yusuf, “Pengaruh Key Performance Indikator terhadap Kinerja Karyawan Perusahaan Peralatan Rumah Tangga,” Jurnal Informasi Penelitian, vol. 2, no. 8, pp. 2763–2768, Jan. 2022.

S. Dipura, D. Soediantono, S. Staf, K. Tni, and A. Laut, “Benefits of Key Performance Indicators (KPI) and Proposed Applications in the Defense Industry: A Literature Review,” INTERNATIONAL JOURNAL OF SOCIAL AND MANAGEMENT STUDIES (IJOSMAS), vol. 3, no. 4, 2022.

G. Darshan and Dr. J. Vidani, “A Study on Key Performing Indicator and their Impact on Sales at MYBAE BAGS,” International Journal of Business and Management Practices (IJBMP), vol. 2, no. 4, Sep. 2024, doi: 10.59890/ijbmp.v2i4.2469.

F. M. S. Al-Zwainy et al., “Utilizing Artificial Neural Networks for Predictive KPI Analysis in Bridge Projects,” 2024. [Online]. Available: https://www.researchgate.net/publication/384931097

O. Y. Odufuwa, L. K. Tartibu, and K. Kusakana, “Artificial neural network modelling for predicting efficiency and emissions in mini-diesel engines: Key performance indicators and environmental impact analysis,” Fuel, vol. 387, May 2025, doi: 10.1016/j.fuel.2025.134294.

A. MohamedAbdEL-Mongy, A. El-deen Hamouda, N. Nounou, and A.-M. A. Wahdan, “Design of Prediction System for Key Performance Indicators in Balanced Scorecard,” Int J Comput Appl, vol. 72, no. 8, pp. 10–14, Jun. 2013, doi: 10.5120/12512-6016.

D. Ayu Damayanti and R. Fitriani, “Analisis Pengukuran Kinerja Perusahaan Melalui Key Performance Indicator Pada PT. XYZ,” vol. VIII, no. 2, 2023.

S. K. Oladapo, A. Ahmad, and K. I. Musa, “An Enhanced Employee Promotion Prediction System Using a Backpropagation-Artificial Neural Network Approach,” International Journal of Scientific Research in Computer Science and Engineering, vol. 13, no. 2, pp. 1–10, Apr. 2025, doi: 10.26438/ijsrcse.v13i2.615.

P. S. T. Mawuntu and R. C. Aotama, “Pengukuran Kinerja UMKM Berdasarkan Key Performance Indicators (KPI) Metode Balanced Scorecard,” WACANA EKONOMI (Jurnal Ekonomi, Bisnis dan Akuntansi), vol. 21, no. 1, pp. 72–83, Apr. 2022, doi: 10.22225/we.21.1.2022.72-83.

I. A. Insan, “Pengaruh Biaya Promosi Terhadap Nilai Penjualan pada PT karya manunggal Pangkajene dan Kepulauan,” Jurnal Brand Universitas Muslim Maros, vol. 1, Jun. 2021.

S. Rezeki, “Pengaruh Promosi Penjualan dan Persediaan Terhadap Volume Penjualan Pada PT Kingled Indonesia,” Jul. 2024.

D. T. Tran, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Bilinear Input Normalization for Neural Networks in Financial Forecasting,” Sep. 2021, [Online]. Available: http://arxiv.org/abs/2109.00983

P. Thomas et al., “A Method for Key Performance Indicator Assessment in Manufacturing Organizations,” 2020. [Online]. Available: https://www.researchgate.net/publication/321757397

F. M. S. Al-Zwainy et al., “Utilizing Artificial Neural Networks for Predictive KPI Analysis in Bridge Projects,” 2024. [Online]. Available: https://www.researchgate.net/publication/384931097

A. Jierula, S. Wang, T. M. Oh, and P. Wang, “Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data,” Applied Sciences (Switzerland), vol. 11, no. 5, pp. 1–21, Mar. 2021, doi: 10.3390/app11052314.

O. Y. Odufuwa, L. K. Tartibu, and K. Kusakana, “Artificial neural network modelling for predicting efficiency and emissions in mini-diesel engines: Key performance indicators and environmental impact analysis,” Fuel, vol. 387, May 2025, doi: 10.1016/j.fuel.2025.134294.

B. Prasad, R. Kumar, and M. Singh, “Performance analysis of various training algorithms of deep learning based controller,” Engineering Research Express, vol. 5, no. 2, Jun. 2023, doi: 10.1088/2631-8695/acd3d5.

J. Zhang, “A Neural Network Model for Business Performance Management Based on Random Matrix Theory,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/9170666.

M. Tufegdžić, M. Trajanovic, M. Tufegdžić, G. Jovičić, M. Trajanović, and P. Pravdić, “Company’s performance prediction using Balanced Scorecard software and neural networks as a tool for strategic management,” 2020. [Online]. Available: https://www.researchgate.net/publication/352461324

M. M. Yuniar and R. Ambarwati, “Prediction analysis of retail store sales level using neural network algorithm method based on customer segments,” International Journal of Industrial Optimization, pp. 177–188, Mar. 2025, doi: 10.12928/ijio.v5i2.9889.

J. K. Adeniyi et al., “Comparison of the Performance of Machine Learning Techniques in the Prediction of Employee,” ParadigmPlus, vol. 3, no. 3, pp. 1–15, Nov. 2022, doi: 10.55969/paradigmplus.v3n3a1.

Posted

2025-08-25