Integrating Life Cycle Management and Risk Assessment for Enhanced Investment in Power Plant Equipment Maintenance
Mengintegrasikan Manajemen Siklus Hidup dan Penilaian Risiko untuk Peningkatan Investasi dalam Pemeliharaan Peralatan Pembangkit Listrik
DOI:
https://doi.org/10.21070/ups.8981Keywords:
Life Cycle Management, Pareto Loss, Blade Turbine, Power Plant Investment, EAF, EFOR, NPHRAbstract
Investment decision-making in the power generation sector faces significant challenges due to technical risks and declining operational efficiency. This research is urgent because there is no integrative model that systematically combines technical and financial approaches in determining investment feasibility, particularly for critical components such as the Blade Turbine Row 14 at PLTU XYZ. The objective of this study is to identify dominant risk factors and assess investment feasibility based on historical data and asset life cycle analysis. The research method employs a concurrent mixed methods approach by integrating quantitative analysis (Pareto Loss, Failure Mode, LCM) with qualitative insights (FGD, technical observation), and validated through triangulation of source, time, and method. Results show that Mech-Looseness and Deformation are the main causes of derating, reaching up to 700 hours, decreasing efficiency, and increasing NPHR. Financially, however, the investment of Rp5.95 billion is considered highly feasible, with an NPV of Rp54.97 billion, IRR of 164%, Payback Period of 1 year, and a B/C ratio of 16.44. This study offers strategic value by demonstrating that implementing Life Cycle Management (LCM) integrated with Failure Mode and Pareto Loss can improve investment decision accuracy, extend asset lifespan, and strengthen operational efficiency and sustainability of the power plant.
Downloads
References
A. Ocolișanu, G. Dobrotă, and D. Dobrotă, “The Effects of Public Investment on Sustainable Economic Growth: Empirical Evidence from Emerging Countries in Central and Eastern Europe,” Sustainability, vol. 14, no. 14, p. 8721, Jul. 2022, doi: 10.3390/su14148721.
R. Ambarwati, Dedy, R. Dijaya, and I. Anshory, “A multi-method study of risk assessment and human risk control for power plant business continuity in Indonesia,” Results Eng., vol. 21, p. 101863, Mar. 2024, doi: 10.1016/j.rineng.2024.101863.
G. Murehwa, D. Zimwara, W. Tumbudzuku, and S. Mhlanga, “Energy Efficiency Improvement in Thermal Power Plants,” Int. J. Innov. Technol. Explor. Eng., vol. 2, no. 1, 2012.
R. Ambarwati, D. Yuliastri, and W. Sulistiyowati, “Human resource risk control through COVID-19 risk assessment in Indonesian manufacturing,” J. Loss Prev. Process Ind., vol. 74, p. 104665, Jan. 2022, doi: 10.1016/j.jlp.2021.104665.
R. Andespa, D. A. I. Maruddani, and T. Tarno, “Expected Shortfall Dengan Ekspansi Cornish-Fisher Untuk Analisis Risiko Investasi Sebelum Dan Sesudah Pandemi Covid-19 Dilengkapi Gui R,” J. Gaussian, vol. 11, no. 2, pp. 173–182, Aug. 2022, doi: 10.14710/j.gauss.v11i2.35457.
E. Wong, “Data Analysis Support of Artificial Intelligence in Financial Investment Decision-Making,” Mod. Econ. Manag. Forum, vol. 5, no. 5, p. 784, Oct. 2024, doi: 10.32629/memf.v5i5.2840.
A. Abyad, “The Pareto Principle: Applying the 80/20 Rule to Your Business,” Middle East J. Bus., vol. 15, no. 1, pp. 6–9, 2020, doi: 10.5742/MEJB.2021.93880.
D. E. Pujiwisanti Putri, Penjadwalan Perawatan Level Luffing Crane 40 Ton Menggunakan Metode Reliability Centered Maintenance (RCM II). Surabaya: Politeknik Perkapalan Negeri Surabaya (PPNS), 2023.
N. S. Bhangu, R. Singh, and G. L. Pahuja, “Failure Mode and Effect Analysis of a Thermal Power Plant for Enhancing its Reliability,” Appl. Mech. Mater., vol. 110–116, pp. 2969–2975, Oct. 2011, doi: 10.4028/www.scientific.net/AMM.110-116.2969.
P. P. Widya, R. Ambarwati, D. Dedy, and M. T. Alimova, “Leveraging Social Network Analysis for Enhancing Safety Reporting in the Workplace,” J. Tek. Ind., vol. 26, no. 1, pp. 9–24, Mar. 2024, doi: 10.9744/jti.26.1.9-24.
L. Rigamonti and E. Mancini, “Life cycle assessment and circularity indicators,” Int. J. Life Cycle Assess., vol. 26, no. 10, pp. 1937–1942, Oct. 2021, doi: 10.1007/s11367-021-01966-2.
K. Fettah et al., “A pareto strategy based on multi-objective optimal integration of distributed generation and compensation devices regarding weather and load fluctuations,” Sci. Rep., vol. 14, no. 1, p. 10423, May 2024, doi: 10.1038/s41598-024-61192-2.
D. Rooscote, D. Hendragiri, and A. Suharwanto, “Implementation Risk Indicator and Application of Reliability Management to Ensure the Success of LCM and Risk Management Integration,” in Volume 13: Research Posters; Safety Engineering, Risk and Reliability Analysis, American Society of Mechanical Engineers, Oct. 2023. doi: 10.1115/IMECE2023-110981.
V. Haievskyi, “Study Of Possibilities Of Joint Application Of Pareto Analysis And Risk Analysis During Corrective Actions,” Technol. Transf. Fundam. Princ. Innov. Tech. Solut., vol. 4, pp. 22–24, Nov. 2020, doi: 10.21303/2585-6847.2020.001536.
H. Anysz, A. Nicał, Ž. Stević, M. Grzegorzewski, and K. Sikora, “Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases,” Symmetry (Basel)., vol. 13, no. 1, p. 46, Dec. 2020, doi: 10.3390/sym13010046.
Dedy, A. Sudiarno, and R. Ambarwati, “Shaping the Climate and Culture of Safety Through Safety Leadership in Power Plant,” Int. Conf. Inf. Technol. Eng. Sci. its Appl., 2018.
G. S. Mahendra, Green Technology: Panduan Teknologi Ramah Lingkungan. PT. Sonpedia Publishing Indonesia, 2024.
D. Lo Presti, A. Jimenez Del Barco Carrión, G. Buttitta, A. A. Butt, and J. Harvey, “A Methodology for the Life Cycle Management of European Road Pavements,” 2024, pp. 282–290. doi: 10.1007/978-3-031-61585-6_27.
M. Sapruwan, W. S. Irawanty, L. Khoiriyah, A. Bete, and F. Novia, “Analisis Strategi Manajemen Keuanga N Dalam Meningkatkan Kinerja Finansial Perusahaan Studi Kasus Pada Pt. Unilever Indonesia,” Neraca J. Ekon. Manaj. dan Akunt., vol. 2, no. 2, 2024, doi: https://doi.org/10.572349/neraca.v2i2.859.
B. Ahmed et al., “Does Firm Life Cycle Impact Corporate Investment Efficiency?,” Sustainability, vol. 13, no. 1, p. 197, Dec. 2020, doi: 10.3390/su13010197.
K. Yoshida, T. Hiruta, Y. Kishita, and Y. Umeda, “Model-based Life Cycle Management Using Deterioration Simulation,” Procedia CIRP, vol. 80, pp. 500–505, 2019, doi: 10.1016/j.procir.2019.01.098.
S. Fawzy, A. I. Osman, J. Doran, and D. W. Rooney, “Strategies for mitigation of climate change: a review,” Environ. Chem. Lett., vol. 18, no. 6, pp. 2069–2094, Nov. 2020, doi: 10.1007/s10311-020-01059-w.
Z. Wu, W. Liu, and W. Nie, “Literature review and prospect of the development and application of FMEA in manufacturing industry,” Int. J. Adv. Manuf. Technol., vol. 112, no. 5–6, pp. 1409–1436, Jan. 2021, doi: 10.1007/s00170-020-06425-0.
S. Vyas, A. Desai, S. Badave, A. Kulkarni, and B. Rajiv, “Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis,” World Acad. Sci. Eng. Technol. Int. J. Ind. Manuf. Eng., vol. 11, no. 5, 2017.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
