Preprint has been published in a journal as an article
Preprint / Version 1

From Predictive to Prescriptive Maintenance in Power Generation: An Integrated Five-Layer Framework Validated through Systematic Comparative Analysis

Dari Pemeliharaan Prediktif ke Prescriptive di Pembangkit Listrik: Five-Layer Framework Terintegrasi Dengan Validasi Menggunakan Systematic Comparative Analysis

##article.authors##

DOI:

https://doi.org/10.21070/ups.8962

Keywords:

Prescriptive maintenance, Systematic literature review, Systematic Comparative Analysis, Prescriptive Maintenance Framework

Abstract

Prescriptive maintenance (RxM) has emerged as a strategic evolution in power generation, advancing beyond reactive and predictive approaches by leveraging technologies associated with Industry 4.0. The potential of RxM lies in its ability to support proactive and data driven decision processes. However, existing frameworks remain fragmented and lacking the modularity in complex and variable power plant environments. This study conducts a systematic literature review guided by five research questions to explore the conceptual foundations of RxM, the enabling technologies that support its application including the Internet of Things, machine learning, digital twins, and deep reinforcement learning, the structural components that define its architecture, the primary challenges to its implementation, and the strategies used for validation. Based on these findings, a modular and adaptive RxM framework is developed and conceptually validated using a systematic comparative analysis against seven benchmark studies. The proposed framework integrates cloud-edge computing infrastructures, advanced analytical layers, multi criteria evaluation mechanisms, and iterative feedback processes. The comparative results emphasize the framework's ability to support integrated and responsive maintenance strategies while remaining compatible with industrial platforms. Its design supports both new and existing operational environments, allowing gradual integration without requiring complete system replacement. This study offers a generalizable reference model that can guide organizations seeking to transition from predictive to prescriptive maintenance in power generation. Future research should prioritize field implementation, real time validation, and alignment with broader industry goals including environmental sustainability, transparent artificial intelligence, and improved protection of digital infrastructure

Downloads

Download data is not yet available.

References

E. Gutierrez-Franco, C. Mejia-Argueta, and L. Rabelo, “Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations,” Sustainability, vol. 13, no. 11, p. 6230, Jun. 2021, doi: 10.3390/su13116230.

R. B. Walton, F. W. Ciarallo, and L. E. Champagne, “A unified digital twin approach incorporating virtual, physical, and prescriptive analytical components to support adaptive real-time decision-making,” Comput. Ind. Eng., vol. 193, p. 110241, Jul. 2024, doi: 10.1016/j.cie.2024.110241.

Y. Zhao, J. Yang, W. Wang, H. Yang, and D. Niyato, “TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework,” IEEE Internet Things J., vol. 11, no. 21, pp. 35432–35444, Nov. 2024, doi: 10.1109/JIOT.2024.3436110.

N. Goby, T. Brandt, and D. Neumann, “Deep reinforcement learning with combinatorial actions spaces: An application to prescriptive maintenance,” Comput. Ind. Eng., vol. 179, p. 109165, May 2023, doi: 10.1016/j.cie.2023.109165.

R. Kumar, K. S. Sangwan, C. Herrmann, and R. Ghosh, “Development of a cyber physical production system framework for smart tool health management,” J. Intell. Manuf., vol. 35, no. 7, pp. 3037–3066, Oct. 2024, doi: 10.1007/s10845-023-02192-3.

A. Bousdekis, N. Papageorgiou, B. Magoutas, D. Apostolou, and G. Mentzas, “Sensor-driven Learning of Time-Dependent Parameters for Prescriptive Analytics,” IEEE Access, pp. 1–1, 2020, doi: 10.1109/ACCESS.2020.2994933.

N. R. Haddaway, M. J. Page, C. C. Pritchard, and L. A. McGuinness, “PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis,” Campbell Syst. Rev., vol. 18, no. 2, pp. e1230–e1230, Mar. 2022, doi: 10.1002/cl2.1230.

B. Rihoux and B. Lobe, “The case for qualitative comparative analysis (QCA): Adding leverage for thick cross-case comparison,” Sage Handb. Case-Based Methods, pp. 222–242, 2009.

R. K. Yin, Applications of case study research. Sage publications, 2011.

A. D. Cho, R. A. Carrasco, and G. A. Ruz, “Improving Prescriptive Maintenance by Incorporating Post-Prognostic Information Through Chance Constraints,” IEEE Access, vol. 10, pp. 55924–55932, 2022, doi: 10.1109/ACCESS.2022.3177537.

E. M. Elfarri, A. Rasheed, and O. San, “Artificial Intelligence-Driven Digital Twin of a Modern House Demonstrated in Virtual Reality,” IEEE Access, vol. 11, pp. 35035–35058, 2023, doi: 10.1109/ACCESS.2023.3265191.

A. De Benedictis, F. Flammini, N. Mazzocca, A. Somma, and F. Vitale, “Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-Concept,” IEEE Trans. Ind. Inform., vol. 19, no. 12, pp. 11553–11563, Dec. 2023, doi: 10.1109/TII.2023.3246983.

K. Leahy, C. Gallagher, P. O’Donovan, K. Bruton, and D. O’Sullivan, “A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study,” Energies, vol. 11, no. 7, p. 1738, Jul. 2018, doi: 10.3390/en11071738.

A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0,” Inf. Fusion, vol. 50, pp. 92–111, Oct. 2019, doi: 10.1016/j.inffus.2018.10.005.

G. Gibey, E. Pahon, N. Zerhouni, and D. Hissel, “Diagnostic and prognostic for prescriptive maintenance and control of PEMFC systems in an industrial framework,” J. Power Sources, vol. 613, p. 234864, Sep. 2024, doi: 10.1016/j.jpowsour.2024.234864.

K. Matyas, T. Nemeth, K. Kovacs, and R. Glawar, “A procedural approach for realizing prescriptive maintenance planning in manufacturing industries,” CIRP Ann., vol. 66, no. 1, pp. 461–464, 2017, doi: 10.1016/j.cirp.2017.04.007.

H. Fox, A. C. Pillai, D. Friedrich, M. Collu, T. Dawood, and L. Johanning, “A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance,” Energies, vol. 15, no. 2, p. 504, Jan. 2022, doi: 10.3390/en15020504.

F. Stadtmann et al., “Digital Twins in Wind Energy: Emerging Technologies and Industry-Informed Future Directions,” IEEE Access, vol. 11, pp. 110762–110795, 2023, doi: 10.1109/ACCESS.2023.3321320.

I. Ahmed, M. Ahmad, G. Jeon, and F. Piccialli, “A Framework for Pandemic Prediction Using Big Data Analytics,” Big Data Res., vol. 25, p. 100190, Jul. 2021, doi: 10.1016/j.bdr.2021.100190.

Ş. Karakaya, M. Yildirim, N. Gebraeel, and T. Xia, “A sensor-driven operations and maintenance planning approach for large-scale leased manufacturing systems,” Int. J. Prod. Res., vol. 62, no. 24, pp. 8701–8718, Dec. 2024, doi: 10.1080/00207543.2024.2347564.

B. Tektaş, H. H. Turan, N. Kasap, F. Çebi, and D. Delen, “A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning,” Energies, vol. 15, no. 9, p. 3176, Apr. 2022, doi: 10.3390/en15093176.

B. Mazon-Olivo, D. Hernández-Rojas, J. Maza-Salinas, and A. Pan, “Rules engine and complex event processor in the context of internet of things for precision agriculture,” Comput. Electron. Agric., vol. 154, pp. 347–360, Nov. 2018, doi: 10.1016/j.compag.2018.09.013.

L. Pinciroli, P. Baraldi, M. Compare, and E. Zio, “Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning,” Appl. Energy, vol. 352, p. 121947, Dec. 2023, doi: 10.1016/j.apenergy.2023.121947.

C. A. K. Gordon and E. N. Pistikopoulos, “DATA‐DRIVEN prescriptive maintenance toward FAULT‐TOLERANT MULTIPARAMETRIC control,” AIChE J., vol. 68, no. 6, p. e17489, Jun. 2022, doi: 10.1002/aic.17489.

U. Elele, A. Nekahi, A. Arshad, I. Fofana, and K. McAulay, “Oil Quality Index Model Verification and Validation Using Total Acid Number and Interfacial Tension Experimental Data,” IEEE Trans. Dielectr. Electr. Insul., vol. 31, no. 3, pp. 1340–1349, Jun. 2024, doi: 10.1109/TDEI.2024.3357665.

A. Kumar, R. B. Chinnam, and F. Tseng, “An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools,” Comput. Ind. Eng., vol. 128, pp. 1008–1014, Feb. 2019, doi: 10.1016/j.cie.2018.05.017.

O. Spyrou, C. Verdouw, and W. Hurst, “A digital twin reference architecture for pharmaceutical cannabis production,” Int. J. Comput. Integr. Manuf., vol. 37, no. 6, pp. 726–746, Jun. 2024, doi: 10.1080/0951192X.2023.2257635.

M. Koot, M. R. K. Mes, and M. E. Iacob, “A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics,” Comput. Ind. Eng., vol. 154, p. 107076, Apr. 2021, doi: 10.1016/j.cie.2020.107076.

I. Esnaola-Gonzalez, J. Bermúdez, I. Fernandez, and A. Arnaiz, “Semantic prediction assistant approach applied to energy efficiency in Tertiary buildings,” Semantic Web, vol. 9, no. 6, pp. 735–762, Sep. 2018, doi: 10.3233/SW-180296.

A. Dutta, I. A. Karimi, and S. Farooq, “PROAD (Process Advisor): A health monitoring framework for centrifugal pumps,” Comput. Chem. Eng., vol. 163, p. 107825, Jul. 2022, doi: 10.1016/j.compchemeng.2022.107825.

W. Adamczyk et al., “Development and demonstration of advanced predictive and prescriptive algorithms to control industrial installation,” Energy, vol. 313, p. 133648, Dec. 2024, doi: 10.1016/j.energy.2024.133648.

W. Wang, F. Di Maio, and E. Zio, “Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks,” Risk Anal., vol. 39, no. 12, pp. 2766–2785, Dec. 2019, doi: 10.1111/risa.13382.

D. Kothona, I. P. Panapakidis, and G. C. Christoforidis, “Development of prescriptive maintenance methodology for maintenance cost minimization of photovoltaic systems,” Sol. Energy, vol. 271, p. 112402, Mar. 2024, doi: 10.1016/j.solener.2024.112402.

D. Makarov, F. Vahdatikhaki, S. Miller, A. Jamshidi, and A. Dorée, “A framework for real-time compaction guidance system based on compaction priority mapping,” Autom. Constr., vol. 129, p. 103818, Sep. 2021, doi: 10.1016/j.autcon.2021.103818.

A. Arias, G. Feijoo, and M. T. Moreira, “How could Artificial Intelligence be used to increase the potential of biorefineries in the near future? A review,” Environ. Technol. Innov., vol. 32, p. 103277, Nov. 2023, doi: 10.1016/j.eti.2023.103277.

M. Bulut and E. Özcan, “Planning of prescriptive maintenance types for generator with fuzzy logic-based genetic algorithm in a hydroelectric power plant,” Expert Syst. Appl., vol. 240, p. 122480, Apr. 2024, doi: 10.1016/j.eswa.2023.122480.

M. Lombardi, M. Milano, and A. Bartolini, “Empirical decision model learning,” Artif. Intell., vol. 244, pp. 343–367, Mar. 2017, doi: 10.1016/j.artint.2016.01.005.

Y. Wang, A. Potter, M. Naim, A. Vafeas, A. Mavromatis, and D. Simeonidou, “5G Enabled Freeports: A Conceptual Framework,” IEEE Access, vol. 10, pp. 91871–91887, 2022, doi: 10.1109/ACCESS.2022.3201889.

P. Kaur, R. Kumar, and M. Kumar, “A healthcare monitoring system using random forest and internet of things (IoT),” Multimed. Tools Appl., vol. 78, no. 14, pp. 19905–19916, Jul. 2019, doi: 10.1007/s11042-019-7327-8.

M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, “Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks,” IEEE Access, vol. 6, pp. 32328–32338, 2018, doi: 10.1109/ACCESS.2018.2837692.

M. A. Mat Esa and M. Muhammad, “Adoption of prescriptive analytics for naval vessels risk-based maintenance:A conceptual framework,” Ocean Eng., vol. 278, p. 114409, Jun. 2023, doi: 10.1016/j.oceaneng.2023.114409.

D. E. Ighravwe, “Assessment of Sustainable Maintenance Strategy for Manufacturing Industry,” Sustainability, vol. 14, no. 21, p. 13850, Oct. 2022, doi: 10.3390/su142113850.

C. A. K. Gordon, B. Burnak, M. Onel, and E. N. Pistikopoulos, “Data-Driven Prescriptive Maintenance: Failure Prediction Using Ensemble Support Vector Classification for Optimal Process and Maintenance Scheduling,” Ind. Eng. Chem. Res., vol. 59, no. 44, pp. 19607–19622, Nov. 2020, doi: 10.1021/acs.iecr.0c03241.

B. Liu, J. Lin, L. Zhang, and U. Kumar, “A Dynamic Prescriptive Maintenance Model Considering System Aging and Degradation,” IEEE Access, vol. 7, pp. 94931–94943, 2019, doi: 10.1109/ACCESS.2019.2928587.

M. Subramaniyan, A. Skoogh, A. Sheikh Muhammad, J. Bokrantz, and E. Turanoğlu Bekar, “A prognostic algorithm to prescribe improvement measures on throughput bottlenecks,” J. Manuf. Syst., vol. 53, pp. 271–281, Oct. 2019, doi: 10.1016/j.jmsy.2019.07.004.

P. G. Martínez-Llop, J. D. D. Sanz Bobi, Á. Solano Jiménez, and J. Gutiérrez Sánchez, “Condition-Based Maintenance for Normal Behaviour Characterisation of Railway Car-Body Acceleration Applying Neural Networks,” Sustainability, vol. 13, no. 21, p. 12265, Nov. 2021, doi: 10.3390/su132112265.

Z. Sedighi Maman, Y.-J. Chen, A. Baghdadi, S. Lombardo, L. A. Cavuoto, and F. M. Megahed, “A data analytic framework for physical fatigue management using wearable sensors,” Expert Syst. Appl., vol. 155, p. 113405, Oct. 2020, doi: 10.1016/j.eswa.2020.113405.

A. Papaioannou et al., “LP-OPTIMA: A Framework for Prescriptive Maintenance and Optimization of IoT Resources for Low-Power Embedded Systems,” Sensors, vol. 24, no. 7, p. 2125, Mar. 2024, doi: 10.3390/s24072125.

U. Elele, A. Nekahi, A. Arshad, and I. Fofana, “Towards Online Ageing Detection in Transformer Oil: A Review,” Sensors, vol. 22, no. 20, p. 7923, Oct. 2022, doi: 10.3390/s22207923.

M. Rodríguez, A. Crespo, and V. González-Prida, “Enhancing Prescriptive Capabilities in Electrical Substations: A Systemic Impact Factor Approach for Failure Impact Analysis,” Energies, vol. 17, no. 4, p. 770, Feb. 2024, doi: 10.3390/en17040770.

M. A. Hoffmann and R. Lasch, “Tackling Industrial Downtimes with Artificial Intelligence in Data-Driven Maintenance,” ACM Comput. Surv., vol. 56, no. 4, pp. 1–33, Apr. 2024, doi: 10.1145/3623378.

C.-H. Jeon, C.-S. Shim, Y.-H. Lee, and J. Schooling, “Prescriptive maintenance of prestressed concrete bridges considering digital twin and key performance indicator,” Eng. Struct., vol. 302, p. 117383, Mar. 2024, doi: 10.1016/j.engstruct.2023.117383.

L. Rabkin, I. Cohen, and G. Singer, “Resource allocation in ordinal classification problems: A prescriptive framework utilizing machine learning and mathematical programming,” Eng. Appl. Artif. Intell., vol. 132, p. 107914, Jun. 2024, doi: 10.1016/j.engappai.2024.107914.

N. Stein, J. Meller, and C. M. Flath, “Big data on the shop-floor: sensor-based decision-support for manual processes,” J. Bus. Econ., vol. 88, no. 5, pp. 593–616, Jul. 2018, doi: 10.1007/s11573-017-0890-4.

R. Meissner, A. Rahn, and K. Wicke, “Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making,” Reliab. Eng. Syst. Saf., vol. 214, p. 107812, Oct. 2021, doi: 10.1016/j.ress.2021.107812.

C.-Y. Lee and C.-F. Chien, “Pitfalls and protocols of data science in manufacturing practice,” J. Intell. Manuf., vol. 33, no. 5, pp. 1189–1207, Jun. 2022, doi: 10.1007/s10845-020-01711-w.

F. Ansari, R. Glawar, and T. Nemeth, “PriMa: a prescriptive maintenance model for cyber-physical production systems,” Int. J. Comput. Integr. Manuf., vol. 32, no. 4–5, pp. 482–503, May 2019, doi: 10.1080/0951192X.2019.1571236.

S. Zhang, K. Huang, and Y. Yuan, “Spare Parts Inventory Management: A Literature Review,” Sustainability, vol. 13, no. 5, p. 2460, Feb. 2021, doi: 10.3390/su13052460.

N. Ariesen-Verschuur, C. Verdouw, and B. Tekinerdogan, “Digital Twins in greenhouse horticulture: A review,” Comput. Electron. Agric., vol. 199, p. 107183, Aug. 2022, doi: 10.1016/j.compag.2022.107183.

G. Roma, F. Di Maio, and E. Zio, “A condition-informed dynamic Bayesian network framework to support severe accident management in nuclear power plants,” Reliab. Eng. Syst. Saf., vol. 252, p. 110437, Dec. 2024, doi: 10.1016/j.ress.2024.110437.

F. Longo, A. Padovano, F. De Felice, A. Petrillo, and M. Elbasheer, “From ‘prepare for the unknown’ to ‘train for what’s coming’: A digital twin-driven and cognitive training approach for the workforce of the future in smart factories,” J. Ind. Inf. Integr., vol. 32, p. 100437, Apr. 2023, doi: 10.1016/j.jii.2023.100437.

T. Sainati, G. Locatelli, and N. Smith, “Project financing in nuclear new build, why not? The legal and regulatory barriers,” Energy Policy, vol. 129, pp. 111–119, Jun. 2019, doi: 10.1016/j.enpol.2019.01.068.

Y. Raptodimos and I. Lazakis, “Application of NARX neural network for predicting marine engine performance parameters,” Ships Offshore Struct., vol. 15, no. 4, pp. 443–452, Apr. 2020, doi: 10.1080/17445302.2019.1661619.

F. Ilizástigui Pérez, “Writing ‘usable’ Nuclear Power Plant (NPP) safety cases using bowtie methodology,” Process Saf. Environ. Prot., vol. 149, pp. 850–857, May 2021, doi: 10.1016/j.psep.2021.03.022.

J.-T. Sexton, M. Morin, R. Georges, F. Abasian, and J. Gaudreault, “Wood planer control: Predictive and prescriptive approaches via Automatic State Matching Gaussian processes,” Eng. Appl. Artif. Intell., vol. 132, p. 107843, Jun. 2024, doi: 10.1016/j.engappai.2024.107843.

S. Siddiqui, B. Zerhusen, M. Zehetmeier, and M. Effenberger, “Distribution of specific greenhouse gas emissions from combined heat-and-power production in agricultural biogas plants,” Biomass Bioenergy, vol. 133, p. 105443, Feb. 2020, doi: 10.1016/j.biombioe.2019.105443.

P. Zvoncek, O. Nusbaumer, and A. Torri, “Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant,” Nucl. Eng. Technol., vol. 49, no. 2, pp. 426–433, Mar. 2017, doi: 10.1016/j.net.2017.01.016.

M. M. Li, P. Reinhard, C. Peters, S. Oeste-Reiss, and J. M. Leimeister, “A Value Co-Creation Perspective on Data Labeling in Hybrid Intelligence Systems: A Design Study,” Inf. Syst., vol. 120, p. 102311, Feb. 2024, doi: 10.1016/j.is.2023.102311.

S. S. Kamble, A. Gunasekaran, and S. A. Gawankar, “Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications,” Int. J. Prod. Econ., vol. 219, pp. 179–194, Jan. 2020, doi: 10.1016/j.ijpe.2019.05.022.

V. N. Armstrong and C. Banks, “Integrated approach to vessel energy efficiency,” Ocean Eng., vol. 110, pp. 39–48, Dec. 2015, doi: 10.1016/j.oceaneng.2015.10.024.

H. Habibzadeh, C. Kaptan, T. Soyata, B. Kantarci, and A. Boukerche, “Smart City System Design: A Comprehensive Study of the Application and Data Planes,” ACM Comput. Surv., vol. 52, no. 2, pp. 1–38, Mar. 2020, doi: 10.1145/3309545.

D. Pessach, G. Singer, D. Avrahami, H. Chalutz Ben-Gal, E. Shmueli, and I. Ben-Gal, “Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming,” Decis. Support Syst., vol. 134, p. 113290, Jul. 2020, doi: 10.1016/j.dss.2020.113290.

D. Sjödin, V. Parida, and M. Kohtamäki, “Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects,” Technol. Forecast. Soc. Change, vol. 197, p. 122903, Dec. 2023, doi: 10.1016/j.techfore.2023.122903.

D. Brzezińska, P. Bryant, and A. S. Markowski, “An Alternative Evaluation and Indicating Methodology for Sustainable Fire Safety in the Process Industry,” Sustainability, vol. 11, no. 17, p. 4693, Aug. 2019, doi: 10.3390/su11174693.

M. Baldin et al., “Integrated Decision Support Systems (IDSS) for Dairy Farming: A Discussion on How to Improve Their Sustained Adoption,” Animals, vol. 11, no. 7, p. 2025, Jul. 2021, doi: 10.3390/ani11072025.

Y. Liu et al., “RadarVerses in Metaverses: A CPSI-Based Architecture for 6S Radar Systems in CPSS,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 4, pp. 2128–2137, Apr. 2023, doi: 10.1109/TSMC.2022.3228590.

K. Lepenioti, A. Bousdekis, D. Apostolou, and G. Mentzas, “Human-Augmented Prescriptive Analytics With Interactive Multi-Objective Reinforcement Learning,” IEEE Access, vol. 9, pp. 100677–100693, 2021, doi: 10.1109/ACCESS.2021.3096662.

C. Quinn, A. Z. Shabestari, T. Misic, S. Gilani, M. Litoiu, and J. J. McArthur, “Building automation system - BIM integration using a linked data structure,” Autom. Constr., vol. 118, p. 103257, Oct. 2020, doi: 10.1016/j.autcon.2020.103257.

S. Sharma, I. A. Karimi, S. Farooq, L. Samavedham, and R. Srinivasan, “Health Monitoring of Pressure Regulating Stations in Gas Distribution Networks Using Mathematical Models,” Energies, vol. 15, no. 17, p. 6264, Aug. 2022, doi: 10.3390/en15176264.

R. A. D. F. Santiago et al., “Data-Driven Models Applied to Predictive and Prescriptive Maintenance of Wind Turbine: A Systematic Review of Approaches Based on Failure Detection, Diagnosis, and Prognosis,” Energies, vol. 17, no. 5, p. 1010, Feb. 2024, doi: 10.3390/en17051010.

G. Bonifazi, E. Corradini, D. Ursino, L. Virgili, E. Anceschi, and M. C. De Donato, “A machine learning based sentient multimedia framework to increase safety at work,” Multimed. Tools Appl., vol. 81, no. 1, pp. 141–169, Jan. 2022, doi: 10.1007/s11042-021-10984-z.

J. Tinoco, M. Parente, A. Gomes Correia, P. Cortez, and D. Toll, “Predictive and prescriptive analytics in transportation geotechnics: Three case studies,” Transp. Eng., vol. 5, p. 100074, Sep. 2021, doi: 10.1016/j.treng.2021.100074.

N. Musacchio et al., “Artificial Intelligence and Big Data in Diabetes Care: A Position Statement of the Italian Association of Medical Diabetologists,” J. Med. Internet Res., vol. 22, no. 6, p. e16922, Jun. 2020, doi: 10.2196/16922.

G. Wang, A. Gunasekaran, E. W. T. Ngai, and T. Papadopoulos, “Big data analytics in logistics and supply chain management: Certain investigations for research and applications,” Int. J. Prod. Econ., vol. 176, pp. 98–110, Jun. 2016, doi: 10.1016/j.ijpe.2016.03.014.

R. Riedl, “Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions,” Electron. Mark., vol. 32, no. 4, pp. 2021–2051, Dec. 2022, doi: 10.1007/s12525-022-00594-4.

J. N. D. Carvalho, F. R. D. Silva, and E. G. S. Nascimento, “Challenges of the Biopharmaceutical Industry in the Application of Prescriptive Maintenance in the Industry 4.0 Context: A Comprehensive Literature Review,” Sensors, vol. 24, no. 22, p. 7163, Nov. 2024, doi: 10.3390/s24227163.

J. Mateo-Fornés, A. Pagès-Bernaus, L. M. Plà-Aragonés, J. P. Castells-Gasia, and D. Babot-Gaspa, “An Internet of Things Platform Based on Microservices and Cloud Paradigms for Livestock,” Sensors, vol. 21, no. 17, p. 5949, Sep. 2021, doi: 10.3390/s21175949.

T. Susnjak, “Beyond Predictive Learning Analytics Modelling and onto Explainable Artificial Intelligence with Prescriptive Analytics and ChatGPT,” Int. J. Artif. Intell. Educ., vol. 34, no. 2, pp. 452–482, Jun. 2024, doi: 10.1007/s40593-023-00336-3.

A. Consilvio, G. Vignola, P. López Arévalo, F. Gallo, M. Borinato, and C. Crovetto, “A data-driven prioritisation framework to mitigate maintenance impact on passengers during metro line operation,” Eur. Transp. Res. Rev., vol. 16, no. 1, p. 6, Jan. 2024, doi: 10.1186/s12544-023-00631-z.

M. Brennecke, G. Fridgen, J. Jöhnk, S. Radszuwill, and J. Sedlmeir, “When Your Thing Won’t Behave: Security Governance in the Internet of Things,” Inf. Syst. Front., Aug. 2024, doi: 10.1007/s10796-024-10511-z.

Y. Liu et al., “Parallel Radars: From Digital Twins to Digital Intelligence for Smart Radar Systems,” Sensors, vol. 22, no. 24, p. 9930, Dec. 2022, doi: 10.3390/s22249930.

B. T. Denton, “Frontiers of medical decision-making in the modern age of data analytics,” IISE Trans., vol. 55, no. 1, pp. 94–105, Jan. 2023, doi: 10.1080/24725854.2022.2092918.

A. A. Nadiri, M. Gharekhani, and R. Khatibi, “Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning,” Water Resour. Manag., vol. 32, no. 9, pp. 3023–3040, Jul. 2018, doi: 10.1007/s11269-018-1971-z.

J.-N. Kim, M. M. Chiu, H. Lee, Y. W. Oh, H. Gil De Zúñiga, and C. H. Park, “Mapping Media Research Paradigms: Journalism & Mass Communication Quarterly ’s Century of Scientific Evolution,” Journal. Mass Commun. Q., vol. 100, no. 4, pp. 736–772, Dec. 2023, doi: 10.1177/10776990231213376.

S. Lavy, J. A. Garcia, P. Scinto, and M. K. Dixit, “Key performance indicators for facility performance assessment: simulation of core indicators,” Constr. Manag. Econ., vol. 32, no. 12, pp. 1183–1204, Dec. 2014, doi: 10.1080/01446193.2014.970208.

E. Yildiz, C. Møller, and A. Bilberg, “Conceptual foundations and extension of digital twin-based virtual factory to virtual enterprise,” Int. J. Adv. Manuf. Technol., vol. 121, no. 3–4, pp. 2317–2333, Jul. 2022, doi: 10.1007/s00170-022-09462-z.

S. Gupta, H. Rikhtehgar Berenji, M. Shukla, and N. N. Murthy, “Opportunities in farming research from an operations management perspective,” Prod. Oper. Manag., vol. 32, no. 6, pp. 1577–1596, Jun. 2023, doi: 10.1111/poms.13967.

E. Pearlstein, “Teaching Sustainable Collection Care,” J. Am. Inst. Conserv., vol. 56, no. 2, pp. 113–125, Apr. 2017, doi: 10.1080/01971360.2016.1217726.

A. Mammadov, G. Kazar, K. Koc, and O. B. Tokdemir, “Predicting Accident Outcomes in Cross-Border Pipeline Construction Projects Using Machine Learning Algorithms,” Arab. J. Sci. Eng., vol. 48, no. 10, pp. 13771–13789, Oct. 2023, doi: 10.1007/s13369-023-07964-w.

L. Ardito, R. Cerchione, E. Mazzola, and E. Raguseo, “Industry 4.0 transition: a systematic literature review combining the absorptive capacity theory and the data–information–knowledge hierarchy,” J. Knowl. Manag., vol. 26, no. 9, pp. 2222–2254, Sep. 2022, doi: 10.1108/JKM-04-2021-0325.

Z. Y. Wu et al., “High Fidelity Digital Twin-Based Anomaly Detection and Localization for Smart Water Grid Operation Management,” Sustain. Cities Soc., vol. 91, p. 104446, Apr. 2023, doi: 10.1016/j.scs.2023.104446.

X. Wang et al., “The survey on multi-source data fusion in cyber-physical-social systems: Foundational infrastructure for industrial metaverses and industries 5.0,” Inf. Fusion, vol. 107, p. 102321, Jul. 2024, doi: 10.1016/j.inffus.2024.102321.

X. Tian, R. Yan, Y. Liu, and S. Wang, “A smart predict-then-optimize method for targeted and cost-effective maritime transportation,” Transp. Res. Part B Methodol., vol. 172, pp. 32–52, Jun. 2023, doi: 10.1016/j.trb.2023.03.009.

C. Gnekpe, D. Tchuente, S. Nyawa, and P. K. Dey, “Energy Performance of Building Refurbishments: Predictive and Prescriptive AI-based Machine Learning Approaches,” J. Bus. Res., vol. 183, p. 114821, Oct. 2024, doi: 10.1016/j.jbusres.2024.114821.

M. L. Chaves Franz, N. F. Ayala, and A. M. Larranaga, “Industry 4.0 for passenger railway companies: A maturity model proposal for technology management,” J. Rail Transp. Plan. Manag., vol. 32, p. 100480, Dec. 2024, doi: 10.1016/j.jrtpm.2024.100480.

M. Marzouk and N. Seleem, “Assessment of existing buildings performance using system dynamics technique,” Appl. Energy, vol. 211, pp. 1308–1323, Feb. 2018, doi: 10.1016/j.apenergy.2017.10.111.

U. Leturiondo, O. Salgado, L. Ciani, D. Galar, and M. Catelani, “Architecture for hybrid modelling and its application to diagnosis and prognosis with missing data,” Measurement, vol. 108, pp. 152–162, Oct. 2017, doi: 10.1016/j.measurement.2017.02.003.

A. Al Hanbali, H. H. Saleh, O. G. Alsawafy, A. M. Attia, A. M. Ghaithan, and A. Mohammed, “Spare parts supply with incoming quality control and inspection errors in condition based maintenance,” Comput. Ind. Eng., vol. 172, p. 108534, Oct. 2022, doi: 10.1016/j.cie.2022.108534.

C. Nakousi, R. Pascual, A. Anani, F. Kristjanpoller, and P. Lillo, “An asset-management oriented methodology for mine haul-fleet usage scheduling,” Reliab. Eng. Syst. Saf., vol. 180, pp. 336–344, Dec. 2018, doi: 10.1016/j.ress.2018.07.034.

J. Lee, B. Bagheri, and C. Jin, “Introduction to cyber manufacturing,” Manuf. Lett., vol. 8, pp. 11–15, Apr. 2016, doi: 10.1016/j.mfglet.2016.05.002.

P. M. Notz, P. K. Wolf, and R. Pibernik, “Prescriptive analytics for a multi-shift staffing problem,” Eur. J. Oper. Res., vol. 305, no. 2, pp. 887–901, Mar. 2023, doi: 10.1016/j.ejor.2022.06.011.

T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on Machine Learning for Traffic-Driven Service Provisioning in Optical Networks,” IEEE Commun. Surv. Tutor., vol. 25, no. 2, pp. 1412–1443, 2023, doi: 10.1109/COMST.2023.3247842.

W. Hoyos, J. Aguilar, M. Raciny, and M. Toro, “Case studies of clinical decision-making through prescriptive models based on machine learning,” Comput. Methods Programs Biomed., vol. 242, p. 107829, Dec. 2023, doi: 10.1016/j.cmpb.2023.107829.

Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.

S. Srinivas and A. R. Ravindran, “Optimizing outpatient appointment system using machine learning algorithms and scheduling rules: A prescriptive analytics framework,” Expert Syst. Appl., vol. 102, pp. 245–261, Jul. 2018, doi: 10.1016/j.eswa.2018.02.022.

A. Papaioannou et al., “A novel AI-powered method for robust identification of operational phases in refrigerators,” Sustain. Energy Grids Netw., vol. 39, p. 101405, Sep. 2024, doi: 10.1016/j.segan.2024.101405.

S. Cromie and F. Bott, “Just culture’s ‘line in the sand’ is a shifting one; an empirical investigation of culpability determination,” Saf. Sci., vol. 86, pp. 258–272, Jul. 2016, doi: 10.1016/j.ssci.2016.03.012.

S. Singh, R. Batheri, and J. Dias, “Predictive Analytics: How to Improve Availability of Manufacturing Equipment in Automotive Firms,” IEEE Eng. Manag. Rev., vol. 51, no. 4, pp. 157–168, Dec. 2023, doi: 10.1109/EMR.2023.3288669.

Y. Liu et al., “MetaSensing in Metaverses: See There, Be There, and Know There,” IEEE Intell. Syst., vol. 37, no. 6, pp. 7–12, Nov. 2022, doi: 10.1109/MIS.2022.3221844.

J. Wang, X. Wang, Y. Tian, Y. Wang, J. Niu, and O. Kwan, “Parallel Training: An ACP-Based Training Framework for Iterative Learning in Uncertain Driving Spaces,” IEEE Trans. Intell. Veh., vol. 8, no. 4, pp. 2832–2841, Apr. 2023, doi: 10.1109/TIV.2023.3249287.

Z. Zhu, N. Anwer, Q. Huang, and L. Mathieu, “Machine learning in tolerancing for additive manufacturing,” CIRP Ann., vol. 67, no. 1, pp. 157–160, 2018, doi: 10.1016/j.cirp.2018.04.119.

Posted

2025-08-14