Implementation of Data Mining in Determining Car Sales Strategy Using the K-Means Algorithm and Clustering K-Medoids
Implementasi Data Mining dalam Menentukan Strategi Penjualan Mobil Menggunakan Algoritma K-Means dan K-Medoids Clustering
DOI:
https://doi.org/10.21070/ups.8845Keywords:
Data Mining, K-Means, K-Medoids, SalesAbstract
The demand for transportation modes continues to increase, driving many people to own private vehicles to support their daily activities. Cars have become one of the main choices for the Indonesian people. This research aims to analyze car sales data using the K-Means and K-Medoids algorithms to identify transmission preferences and formulate sales strategies. The clustering results show that the K-Means algorithm is optimal at K=2 with a DBI of 0.492, dividing the data into low and high sales groups. K-Medoids provides the best results at K=5 with a DBI of 0.573, resulting in more detailed segmentation based on transmission dominance and sales volume. These findings indicate that K-Medoids is superior in generating specific strategic information. The results of this study are expected to serve as a reference in designing more adaptive car sales strategies to market changes, allowing manufacturers to better align product offerings with consumer needs and preferences.
Downloads
References
S. Butsianto and N. T. Mayangwulan, “Penerapan Data Mining Untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering,” J. Nas. Komputasi dan Teknol. Inf., vol. 3, no. 3, pp. 187–201, 2020, doi:10.32672/jnkti.v3i3.2428.
D. F. RIYANDA, “POLA PEMBELIAN MOBIL SUZUKI BERDASARKAN LOKASI DAN JENISNYA MENGGUNAKAN ALGORITMA K-MEANS.” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2022.
N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. F. Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia: Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 35–41, 2022.
E. T. E. Tasia, “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Clustering Daerah Rawan Banjir Di Kabupaten Rokan Hilir: Comparison Of K-Means And K-Medoid Algorithms For Clustering Of Flood-Prone Areas In Rokan Hilir District,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 65–73, 2023.
F. H. Pratama, A. Triayudi, and E. Mardiani, “Data mining k-medoids dan k-means untuk pengelompokan potensi produksi kelapa sawit di indonesia,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, pp. 1294–1310, 2022.
N. A. S. Z. Abidin, R. D. Avila, A. Hermatyar, and R. Rismayani, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Daerah Produksi Kakao,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 2, pp. 383391, 2022.
S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020.
R. Gustrianda and D. I. Mulyana, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 27, 2022.
M. Kadafi, “Penerapan algoritma fp-growth untuk menemukan pola peminjaman buku perpustakaan UIN raden fatah Palembang. Matics, 10 (2), 52.” 2019.
D. Aggarwal and D. Sharma, “Application of clustering for student result analysis,” Int J Recent Technol Eng, vol. 7, no. 6, pp. 50–53, 2019.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R. H. Zer, and D. Hartama, “Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020.
N. K. Zuhal, “Study Comparison K-Means Clustering Dengan Algoritma Hierarchical Clustering: AHC, K-Means Clustering, Study Comparison,” in Seminar Nasional Teknologi & Sains, 2022, pp. 200–205.
E. Rahmah, “Penerapan Algoritma K-Medoids Clustering untuk menentukan Strategi Promosi Pada Data Mahasiswa (Studi Kasus: STIKES PERINTIS PADANG),” Penerapan Algoritm. K-Medoids Clust. untuk menentukan Strateg. Promosi Pada Data Mhs. (Studi Kasus STIKES PERINTIS PADANG), vol. 5, no. 03, pp. 556–564, 2022.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
