Preprint has been published in a journal as an article
Preprint / Version 1

Sentiment Analysis of Consumer Satisfaction with Steak Hut Manyar Kertoarjo Restaurant Services Using the Naïve Bayes Method and Algorithma Tf-idf

Analisis Sentimen Kepuasan Konsumen Terhadap Layanan Restoran Steak Hut Manyar Kertoarjo Menggunakan Metode TF-Idf

##article.authors##

DOI:

https://doi.org/10.21070/ups.8782

Keywords:

Preprocessing text, Naive bayes Tf-idf

Abstract

On online shopping sites or often referred to as marketplaces, there is a column of comments and reviews of transactions that have been made by buyers for products that have been purchased. With this product assessment feature, buyers can consider decisions about the products they will buy. But at this time there is a problem with the review feature because many buyers give negative comments but give a five-star rating. This results in the feature of giving values ​​from consumers being bad. For this reason, a sentiment analysis study was conducted on the review feature at the Steakhut Manyar restaurant using the naive Bayes method and the Tf-Idf algorithm. Based on the review of reviews at the Steakhut restaurant, 1000 review data have been collected which are divided into two, namely 700 training data and 300 test data. After that, the text preprocessing data stage is carried out, where the text preprocessing stage is collecting product and service review data on the web page (Cleaning data), changing uppercase letters to lowercase letters (Casefolding), separating sentences into single sentences (tokenizing), removing conjunctions that are not used for sentiment analysis (stopwords), changing words to basic words (stemming) and continuing to give weight to each word using the Tf-idf algorithm..

Downloads

Download data is not yet available.

References

R. Kosasih and A. Alberto, “Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor,” vol. 6, no. 1, 2021, doi: 10.30743/infotekjar.v6i1.3893.

I. A. Mastan and Y. Toni, “ANALISIS SENTIMEN TERHADAP TEMPAT KULINER AYAM GEDEBUK DARI KOMENTAR PENGUNJUNG DENGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER,” JBASE - Journal of Business and Audit Information Systems, vol. 3, no. 1, Mar. 2020, doi: 10.30813/jbase.v3i1.2062.

S. A. Azzahra and A. Wibowo, “ANALISIS SENTIMEN MULTI-ASPEK BERBASIS KONVERSI IKON EMOSI DENGAN ALGORITME NAÏVE BAYES UNTUK ULASAN WISATA KULINER PADA WEB TRIPADVISOR,” vol. 7, no. 4, 2020, doi: 10.25126/jtiik.202071907.

R. Sari, S. Nusa, and M. Jakarta, “Analisis Sentimen Review Restoran menggunakan Algoritma Naive Bayes berbasis Particle Swarm Optimization,” JURNAL INFORMATIKA, vol. 6, no. 1, pp. 23–28, 2019, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/4695

F. Neri, C. Aliprandi, F. Capeci, M. Cuadros, and T. By, “Sentiment analysis on social media,” in Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, 2012, pp. 919–926. doi: 10.1109/ASONAM.2012.164.

I. Maulidah, J. Widodo, and M. Zulianto, “PENGARUH KUALITAS PRODUK DAN KUALITAS PELAYANAN TERHADAP KEPUASAN KONSUMEN DI RUMAH MAKAN AYAM GORENG NELONGSO JEMBER,” JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi dan Ilmu Sosial, vol. 13, no. 1, p. 26, Apr. 2019, doi: 10.19184/jpe.v13i1.10416.

Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 2, pp. 367–379, Feb. 2023, doi: 10.47065/josyc.v4i2.3092.

M. R. Fauzi, R. A. Pratama, P. Laksono, and P. Eosina, “Penerapan Big Data Menggunakan Algoritma Multi-Label K-Nearest Neighbor dalam Analisis Sentimen Konsumen UMKM Sektor Kuliner,” Krea-TIF, vol. 9, no. 1, p. 9, May 2021, doi: 10.32832/kreatif.v9i1.3587.

R. Sari, S. Nusa, and M. Jakarta, “Analisis Sentimen Review Restoran menggunakan Algoritma Naive Bayes berbasis Particle Swarm Optimization,” JURNAL INFORMATIKA, vol. 6, no. 1, pp. 23–28, 2019, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/4695

Y. T. Pratama, F. Abdurrachman Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Opini Pelanggan Terhadap Aspek Pariwisata Pantai Malang Selatan Menggunakan TF-IDF dan Support Vector Machine,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

A. Reyes and P. Rosso, “Making objective decisions from subjective data: Detecting irony in customer reviews,” in Decision Support Systems, Nov. 2012, pp. 754–760. doi: 10.1016/j.dss.2012.05.027.

A. Barreda and A. Bilgihan, “An analysis of user-generated content for hotel experiences,” Journal of Hospitality and Tourism Technology, vol. 4, no. 3, pp. 263–280, 2013, doi: 10.1108/JHTT-01-2013-0001.

S. Pike and S. J. Page, “Destination Marketing Organizations and destination marketing: Anarrative analysis of the literature,” 2014, Elsevier Ltd. doi: 10.1016/j.tourman.2013.09.009.

S. Hidayani, “ASPEK HUKUM PERLINDUNGAN KONSUMEN DALAM PELA YANAN AIR BERSIH PADA PDAM TIRTASARI BINJAI 0 L E H.”

W. G. Kim, C. Y. N. Ng, and Y. soon Kim, “Influence of institutional DINESERV on customer satisfaction, return intention, and word-of-mouth,” Int J Hosp Manag, vol. 28, no. 1, pp. 10–17, Mar. 2009, doi: 10.1016/j.ijhm.2008.03.005.

C. H. S. Liu and T. Lee, “Service quality and price perception of service: Influence on word-of-mouth and revisit intention,” J Air Transp Manag, vol. 52, pp. 42–54, Apr. 2016, doi: 10.1016/j.jairtraman.2015.12.007.

A. S. H. Basari, B. Hussin, I. G. P. Ananta, and J. Zeniarja, “Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization,” in Procedia Engineering, Elsevier Ltd, 2013, pp. 453–462. doi: 10.1016/j.proeng.2013.02.059.

S. Amelia, “THE EFFECT OF PERCEIVED QUALITY, BRAND AWARENESS, AND BRAND LOYALTY TOWARD BRAND EQUITY OF BEER BINTANG IN SURABAYA,” 2018.

N. Andriani and A. Wibowo, Implementasi Text Mining Klasifikasi Topik Tugas Akhir Mahasiswa Teknik Informatika Menggunakan Pembobotan TF-IDF dan Metode Cosine Similarity Berbasis Web. 2021.

A. Shathik and K. Prasad, “A Literature Review on Application of Sentiment Analysis Using Machine Learning Techniques,” International Journal of Applied Engineering and Management Letters (IJAEML) A Refereed International Journal of Srinivas University, vol. 4, no. 2, pp. 2581–7000, 2020, doi: 10.5281/zenodo.3977576.

R. Apriani and D. Gustian, “ANALISIS SENTIMEN DENGAN NAÏVE BAYES TERHADAP KOMENTAR APLIKASI TOKOPEDIA,” 2019.

G. Valkanas, A. Saravanou, and D. Gunopulos, “A Faceted Crawler for the Twitter Service.”

R. Garnier, R. Langhendries, and J. Rynkiewicz, “Hold-out estimates of prediction models for Markov processes,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.05587

H. Najjichah, A. Syukur, and H. Subagyo, “PENGARUH TEXT PREPROCESSING DAN KOMBINASINYA PADA PERINGKAS DOKUMEN OTOMATIS TEKS BERBAHASA INDONESIA,” 2019. [Online]. Available: http://research.

Posted

2025-08-07