Preprint has been published in a journal as an article
Preprint / Version 1

Implementation of a Real-Time Student Attendance System in the Classroom Using YOLOv8 and Face Recognition

Implementasi Sistem Absensi Siswa Secara Real-Time di Kelas Menggunakan YOLOv8 dan Pengenalan Wajah

##article.authors##

DOI:

https://doi.org/10.21070/ups.8773

Keywords:

YOLOv8, Attendance System, Face Recognition, Python

Abstract

Conventional attendance systems that rely on manual input often cause inefficiency and potential fraud. To overcome this, this study develops an automatic attendance system based on facial recognition using Face Recognition technology and YOLOv8. The system is implemented in Python using OpenCV, face_recognition, and PyQt5 as the graphical interface. The process starts with capturing and augmenting facial data, followed by storing face encodings in CSV format. During attendance sessions, the system detects faces in real-time through a camera, matches them with stored data, and records attendance based on arrival time with statuses such as “Detected,” “Late,” or “Not Detected.” Attendance data is automatically saved in Excel format. Testing at Universitas Muhammadiyah Sidoarjo shows the system can recognize over 95% of student faces accurately in less than 15 minutes after class starts. This proves the system is effective, efficient, and feasible to implement in both educational institutions and office environments.

Downloads

Download data is not yet available.

References

H. Riski and D. Wahyu Utomo, “Habibu Riski: Algoritma Principal Component Analysis … 72 Algoritma Principal Component Analysis (PCA) dan Metode Bounding Box pada Pengenalan Citra Wajah,” vol. 9, no. 1, 2024.

L. Fitria and M. Hermansyah, “InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Implementasi Face Recognition pada Absensi Kehadiran Mahasiswa Menggunakan Metode Haar Cascade Classifier,” vol. 4, no. 2, 2020, doi: 10.30743/infotekjar.v4i2.2333.

H. Sampul, “RANCANG BANGUN HARVEST ASSISTING MOBILE FIELD ROBOT BERBASIS COMPUTER VISION DENGAN METODE DEEP LEARNING.”

S. Sugeng and A. Mulyana, “Sistem Absensi Menggunakan Pengenalan Wajah (Face Recognition) Berbasis Web LAN,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 1, pp. 127–135, Apr. 2022, doi: 10.32736/sisfokom.v11i1.1371.

D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” 2023. [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk

R. Dijaya, I. Anshory, R. A. Sukmono, and A. R. Fajaresta, “Facial Fatigue Detection in High-Risk Occupational Environments: Leveraging YOLOv4 for Enhanced Worker Safety,” in 2023 1st International Conference on Advanced Engineering and Technologies, ICONNIC 2023 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 356–361. doi: 10.1109/ICONNIC59854.2023.10468037.

B. Santoso and R. P. Kristianto, “IMPLEMENTASI PENGGUNAAN OPENCV PADA FACE RECOGNITION UNTUK SISTEM PRESENSI PERKULIAHAN MAHASISWA.”

A. Tessa Ningrum, R. Wijay, M. Rizal Abdul Aziz, M. Yudha Mauluda, and P. Rosyani, “Face Deteksi Objek pada Gambar dan Video dengan YOLOv8 (Counting Objects),” 2024. [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk

M. Nazib Istikhori, Y. Bachtiar, and A. Susano, “SISTEM MONITORING GURU BERBASIS INTERNET OF THINGS (IOT) MENGGUNAKAN METODE FACE RECOGNITION (STUDI KASUS : SMK YAPURA 1 TENJOLAYA),” 2025.

Andri Nugraha Ramdhon and Fadly Febriya, “Penerapan Face Recognition Pada Sistem Presensi,” Journal of Applied Computer Science and Technology, vol. 2, no. 1, pp. 12–17, Jun. 2021, doi: 10.52158/jacost.v2i1.121.

Posted

2025-08-06