The Impact of Market Sentiment and the Bitcoin Halving Event on Cryptocurrency Returns (Wilcoxon Test) and Volatility (KruskalWallis Test)
Pengaruh Sentimen Pasar dan Event Bicoin Halving terhadap Return (Uji Wilcoxon) dan Volatilitas (Uji Kruskal-Wallis) Aset Kripto
DOI:
https://doi.org/10.21070/ups.8767Keywords:
Market Sentiment, Crypto Assets, Return and Volatility, Bitcoin Halving, Nonparametic Event Study, Wilcoxon Signed-Rank Test, Kruskal-Wallis TestAbstract
This study aims to analyze the impact of market sentiment and the Bitcoin Halving event on the return and volatility
of crypto assets using a nonparametric approach. Using the Bitcoin Halving event on April 19, 2024 as a reference
point, this research develops a sentiment-based predictive model utilizing social media sentiment to project cumulative
abnormal return (CAR) and Bitcoin market return. The validity of the predictions is tested using the Wilcoxon SignedRank Test and the Kruskal-Wallis Test, which are appropriate for the volatile and non-normally distributed nature of
crypto asset data. The results show that most assets experienced significant differences in return and volatility between
the pre-event and post-event periods. Statistically, the influence of sentiment on cumulative return and volatility is
proven to be significant in the context of the halving event.
Downloads
References
Anne Haubo Dyhrberg, “Hedging capabilities of bitcoin. Is it the virtual gold?,”
https://www.sciencedirect.com/journal/finance-research-letters, vol. 16, hlm. 139–144, Feb 2016, doi:
https://doi.org/10.1016/j.frl.2015.10.025.
Andrew Urquhart, “The inefficiency of Bitcoin,” https://www.sciencedirect.com/journal/economics-letters, vol.
, hlm. 80–82, Nov 2016, doi: https://doi.org/10.1016/j.econlet.2016.09.019.
J. Fabus, I. Kremenova, N. Stalmasekova, dan T. Kvasnicova-Galovicova, “An Empirical Examination of
Bitcoin’s Halving Effects: Assessing Cryptocurrency Sustainability within the Landscape of Financial
Technologies,” JRFM, vol. 17, no. 6, hlm. 229, Mei 2024, doi: 10.3390/jrfm17060229.
A. Meynkhard, “Fair market value of bitcoin: halving effect,” Investment Management and Financial
Innovations, vol. 16, no. 4, hlm. 72–85, Nov 2019, doi: 10.21511/imfi.16(4).2019.07.
V. Virtonen, “Estimating the Impact of the Bitcoin Halving on Its Price Using Synthetic Control”.
Vladislav Virtonen, “Bitcoin Halving: Did It Pump the Price? This Study Says Yes,” Zerion Blog. Diakses: 20
Juli 2025. [Daring]. Tersedia pada: https://zerion.io/blog/bitcoin-halving-did-it-pump-the-price-this-studysays-yes/
blockchain.news, “Post-Halving Crypto Market Sentiment: Mixed Reactions Among Investors.” Diakses: 20
Juli 2025. [Daring]. Tersedia pada: https://blockchain.news/news/post-halving-crypto-market-sentimentmixed-reactions
“Cambridge Digital Mining Industry Report: Global Operations, Sentiment, and Energy Use - CCAF
publications,” Cambridge Judge Business School. Diakses: 20 Mei 2025. [Daring]. Tersedia pada:
Anamika, Madhumita Chakraborty, dan Sowmya Subramaniam, “Does Sentiment Impact Cryptocurrency?,”
https://ideas.repec.org/s/taf/hbhfxx.html, vol. 24(2), hlm. 202–218, Apr 2023, doi: DOI:
1080/15427560.2021.1950723.
T. Liu dkk., “The Role of Transformer Models in Advancing Blockchain Technology: A Systematic Survey,” 5
September 2024, arXiv: arXiv:2409.02139. doi: 10.48550/arXiv.2409.02139.
M. Cary, “Herding and investor sentiment after the cryptocurrency crash: evidence from Twitter and natural
language processing,” Financ Innov, vol. 10, no. 1, hlm. 142, Sep 2024, doi: 10.1186/s40854-024-00663-x.
V. Gurgul, S. Lessmann, dan W. K. Härdle, “Deep Learning and NLP in Cryptocurrency Forecasting:
Integrating Financial, Blockchain, and Social Media Data,” 25 Oktober 2024, arXiv: arXiv:2311.14759. doi:
48550/arXiv.2311.14759.
E. Öget, “The Effect of Positive and Negative Events on Cryptocurrency Prices,” Ekonomi, Politika & Finans
Araştırmaları Dergisi, vol. 7, no. 1, hlm. 16–31, Mar 2022, doi: 10.30784/epfad.1011204.
A. Raheman, A. Kolonin, I. Fridkins, I. Ansari, dan M. Vishwas, “Social Media Sentiment Analysis for
Cryptocurrency Market Prediction”.
H. Moradi-Kamali, M.-H. Rajabi-Ghozlou, M. Ghazavi, A. Soltani, A. Sattarzadeh, dan R. Entezari-Maleki,
“Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting,” 2
Maret 2025, arXiv: arXiv:2502.14897. doi: 10.48550/arXiv.2502.14897.
K. T. Kim dan L. Fan, “Beyond the hashtags: social media usage and cryptocurrency investment,” International
Journal of Bank Marketing, vol. 43, no. 3, hlm. 569–590, Jan 2025, doi: 10.1108/IJBM-12-2023-0665.
R. C. F. De Araújo, A. S. R. Pinto, dan M. Ferrandin, “Sentiment Identification on Tweets to Forecast
Cryptocurrency’s Volatility,” Journal of Computer Science, vol. 19, no. 5, hlm. 619–628, Mei 2023, doi:
3844/jcssp.2023.619.628.
P. Jaquart, S. Köpke, dan C. Weinhardt, “Machine learning for cryptocurrency market prediction and trading,”
The Journal of Finance and Data Science, vol. 8, hlm. 331–352, Nov 2022, doi: 10.1016/j.jfds.2022.12.001.
K. Qureshi dan T. Zaman, “Social media engagement and cryptocurrency performance,” PLoS ONE, vol. 18,
no. 5, hlm. e0284501, Mei 2023, doi: 10.1371/journal.pone.0284501.
S. Corbet, B. Lucey, A. Urquhart, dan L. Yarovaya, “Cryptocurrencies as a financial asset: A systematic
analysis,” International Review of Financial Analysis, vol. 62, hlm. 182–199, Mar 2019, doi:
1016/j.irfa.2018.09.003.
C. Kleitsikas, N. Korfiatis, S. Leonardos, dan C. Ventre, “Bitcoin’s Edge: Embedded Sentiment in Blockchain
Transactional Data,” 18 April 2025, arXiv: arXiv:2504.13598. doi: 10.48550/arXiv.2504.13598.
S. Bogdan, N. Brmalj, dan E. Mujačević, “Impact of Liquidity and Investors Sentiment on Herd Behavior in
Cryptocurrency Market,” IJFS, vol. 11, no. 3, hlm. 97, Jul 2023, doi: 10.3390/ijfs11030097.
O. Gozbasi, B. Altinoz, dan E. E. Sahin, “IS BITCOIN A SAFE HAVEN? A STUDY ON THE FACTORS
THAT AFFECT BITCOIN PRICES,” IJEFI, vol. 11, no. 4, hlm. 35–40, Jul 2021, doi: 10.32479/ijefi.11602.
S. Liu, “Is Bitcoin a Safe-haven Against Geopolitical Events: An Analysis Based on Russian-Ukrainian
Conflict,” HBEM, vol. 7, hlm. 263–272, Apr 2023, doi: 10.54097/hbem.v7i.6957.
Y. Zou dan D. Herremans, “PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price
movement prediction of Bitcoin,” Expert Systems with Applications, vol. 233, hlm. 120838, Des 2023, doi:
1016/j.eswa.2023.120838.
S. Arslan, “Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition,” Comput
Econ, vol. 65, no. 4, hlm. 2227–2248, Apr 2025, doi: 10.1007/s10614-024-10588-3.
F. A. Lovera, Y. C. Cardinale, dan M. N. Homsi, “Sentiment Analysis in Twitter Based on Knowledge Graph
and Deep Learning Classification,” Electronics, vol. 10, no. 22, hlm. 2739, Nov 2021, doi:
3390/electronics10222739.
Y. Zhang, J. Fan, dan B. Dong, “Deep Learning-Based Analysis of Social Media Sentiment Impact on
Cryptocurrency Market Microstructure,” Academic Journal of Sociology & Management, vol. 3, no. 2, hlm.
–21, Mar 2025, doi: 10.70393/616a736d.323730.
M. F. B. Hossain, L. Z. Lamia, M. M. Rahman, dan M. M. Khan, “FinBERT-BiLSTM: A Deep Learning Model
for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics,” 2 November 2024,
arXiv: arXiv:2411.12748. doi: 10.48550/arXiv.2411.12748.
S. M. Dashtaki, M. H. Chagahi, B. Moshiri, dan M. J. Piran, “Multi-Source Hard and Soft Information Fusion
Approach for Accurate Cryptocurrency Price Movement Prediction,” 27 September 2024, arXiv:
arXiv:2409.18895. doi: 10.48550/arXiv.2409.18895.
“Individual Comparisons by Ranking Methods on JSTOR.” Diakses: 22 Mei 2025. [Daring]. Tersedia pada:
https://www.jstor.org/stable/3001968?origin=crossref
L. Mueller, S. Stoeckl, D. Schiereck, dan J. Mueller, “Estimating Crypto-Related Risk: Market-Based Evidence
from FTX’s Failure and Its Contagion on U.S. Banks”.
Diaconasu Delia Elena, Sayed Mehdian, dan Ovidiu Stoica, “An analysis of investors’ behavior in Bitcoin
market”, doi: http://dx.doi.org/10.1371/journal.pone.0264522.
A. Saggu, L. Ante, dan K. Kopiec, “Uncertain Regulations, Definite Impacts: The Impact of the U.S. Securities
and Exchange Commission’s Regulatory Interventions on Crypto Assets,” Finance Research Letters, vol. 72,
hlm. 106413, Feb 2025, doi: 10.1016/j.frl.2024.106413.
W. H. Kruskal dan W. A. Wallis, “Use of Ranks in One-Criterion Variance Analysis,” Journal of the American
Statistical Association, vol. 47, no. 260, hlm. 583–621, 1952, doi: 10.2307/2280779.
R. Haniffa, M. Hudaib, dan T. Nawaz, “The Value of Social Capital for the Success of SPAC IPOs,” IJFS, vol.
, no. 2, hlm. 31, Mei 2022, doi: 10.3390/ijfs10020031.
A. I. Putri, N. Q. Lutfillah, dan D. Djuharni, “Comparison of Performance and Best Choice of Investment
Instruments: A Study from Indonesia,” equity, vol. 5, no. 1, Des 2024, doi: 10.46821/equity.v5i1.513.
K. Jarno dan H. Kołodziejczyk, “Does the Design of Stablecoins Impact Their Volatility?,” JRFM, vol. 14, no.
, hlm. 42, Jan 2021, doi: 10.3390/jrfm14020042.
A. Bouteska dan B. Regaieg, “Loss aversion, overconfidence of investors and their impact on market
performance evidence from the US stock markets,” JEFAS, vol. 25, no. 50, hlm. 451–478, Des 2020, doi:
1108/JEFAS-07-2017-0081.
N. Kyriazis, S. Papadamou, P. Tzeremes, dan S. Corbet, “The differential influence of social media sentiment
on cryptocurrency returns and volatility during COVID-19,” The Quarterly Review of Economics and Finance,
vol. 89, hlm. 307–317, Jun 2023, doi: 10.1016/j.qref.2022.09.004.
C. Y.-H. Chen dan C. M. Hafner, “Sentiment-Induced Bubbles in the Cryptocurrency Market,” JRFM, vol. 12,
no. 2, hlm. 53, Apr 2019, doi: 10.3390/jrfm12020053.
J.-P. Bouchaud, “The Inelastic Market Hypothesis: A Microstructural Interpretation,” 11 Januari 2022, arXiv:
arXiv:2108.00242. doi: 10.48550/arXiv.2108.00242.
K. Coufalová, “Prospect Theory in the Cryptocurrency Market”.
D. Garcia dan F. Schweitzer, “Social signals and algorithmic trading of Bitcoin,” R. Soc. open sci., vol. 2, no.
, hlm. 150288, Sep 2015, doi: 10.1098/rsos.150288.
J. Mednis dan S. Palmquist, “PORTFOLIO OPTIMIZATION WITH CRYPTO ASSETS”.
S. Bowala dan J. Singh, “Optimizing Portfolio Risk of Cryptocurrencies Using Data-Driven Risk Measures,”
JRFM, vol. 15, no. 10, hlm. 427, Sep 2022, doi: 10.3390/jrfm15100427.
G. M. Caporale dan A. Plastun, “THE DAY OF THE WEEK EFFECT IN THE CRYPTO CURRENCY
MARKET”.
D. J. Cumming, J. Fuchs, dan P. P. Momtaz, “Market Reactions to Cryptocurrency Regulation: Risk, Return,
and the Role of Enforcement Quality,” 2024, Elsevier BV. doi: 10.2139/ssrn.4955862.
X. Huang dkk., “LSTM Based Sentiment Analysis for Cryptocurrency Prediction,” 17 Oktober 2021, arXiv:
arXiv:2103.14804. doi: 10.48550/arXiv.2103.14804.
K. I. Roumeliotis, N. D. Tselikas, dan D. K. Nasiopoulos, “LLMs and NLP Models in Cryptocurrency Sentiment
Analysis: A Comparative Classification Study,” BDCC, vol. 8, no. 6, hlm. 63, Jun 2024, doi:
3390/bdcc8060063.
S. Sahu, A. F. Ramírez, dan J.-M. Kim, “Exploring Calendar Anomalies and Volatility Dynamics in
Cryptocurrencies: A Comparative Analysis of Day-of-the-Week Effects before and during the COVID-19
Pandemic,” JRFM, vol. 17, no. 8, hlm. 351, Agu 2024, doi: 10.3390/jrfm17080351.
N. Uras, L. Marchesi, M. Marchesi, dan R. Tonelli, “Forecasting Bitcoin closing price series using linear
regression and neural networks models,” 4 Januari 2020, arXiv: arXiv:2001.01127. doi:
48550/arXiv.2001.01127.
T. R. Li, A. S. Chamrajnagar, X. R. Fong, N. R. Rizik, dan F. Fu, “Sentiment-Based Prediction of Alternative
Cryptocurrency Price Fluctuations Using Gradient Boosting Tree Model,” 1 Mei 2018, arXiv:
arXiv:1805.00558. doi: 10.48550/arXiv.1805.00558.
N. Spencer, N. C. Smeeton, dan P. Sprent, Applied Nonparametric Statistical Methods, 5 ed. Boca Raton:
Chapman and Hall/CRC, 2025. doi: 10.1201/9780429326172.
J. Y.-L. Chan, S. W. Phoong, S. Y. Phoong, W. K. Cheng, dan Y.-L. Chen, “The Bitcoin Halving Cycle
Volatility Dynamics and Safe Haven-Hedge Properties: A MSGARCH Approach,” Mathematics, vol. 11, no.
, hlm. 698, Jan 2023, doi: 10.3390/math11030698.
Frances Yue, “Has bitcoin halving lost its mojo? The crypto sees its worst ever post-halving performance.
Bitcoin’s price soared in the months after its first three halvings,” Has bitcoin halving lost its mojo? The crypto
sees its worst ever post-halving performance. [Daring]. Tersedia pada:
Z. Song, “Behavioral biases in the cryptocurrency market: a study on the impact of investor sentiment on price
anomalies,” JAEPS, vol. 18, no. 2, hlm. 35–39, Apr 2025, doi: 10.54254/2977-5701/2025.21938.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
