Topic Modeling in 2019 Indonesian Election News Titles Using the Latent Dirichlet Allocation (LDA) Method
Pemodelan Topik dalam Judul Berita Pemilu 2019 Indonesia Menggunakan Metode Latent Dirichlet Allocation (LDA)
DOI:
https://doi.org/10.21070/ups.8741Keywords:
Latent Dirichlet Allocation, General Elections, Topic ModelingAbstract
This research examines the reporting of the 2019 General Election in Indonesia, focusing on analysis using the Latent Dirichlet Allocation (LDA) method. With comprehensive data processing and text analysis, the study successfully identifies key topics in the media narrative related to the election. These topics include the dynamics of the general election, such as campaign strategies and the influence of significant political figures, as well as logistical and administrative elements of the election. The LDA method, enhanced with interactive visualization using pyLDAvis, allows for detailed analysis of how the media approaches these issues. The results of this research provide deep insights into how various aspects of the election are perceived and presented to the public through the media. These findings are highly relevant not only for understanding the broader context of the election but also in the context of designing effective political communication strategies for the future.
Downloads
References
D. Z. T. Kannitha, M. Mustafid, and P. Kartikasari, “Pemodelan Topik Pada Keluhan Pelanggan Menggunakan Algoritma Latent Dirichlet Allocation Dalam Media Sosial Twitter,” J. Gaussian, vol. 11, no. 2, pp. 266–277, 2022, doi: 10.14710/j.gauss.v11i2.35474.
M. Y. Febrianta, S. Widiyanesti, and S. R. Ramadhan, “Analisis Ulasan Indie Video Game Lokal pada Steam Menggunakan Analisis Sentimen dan Pemodelan Topik Berbasis Latent Dirichlet Allocation,” J. Animat. Games Stud., vol. 7, no. 2, pp. 117–144, 2021, doi: 10.24821/jags.v7i2.5162.
A. Syaifuddin, R. A. Harianto, and J. Santoso, “Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA,” J. Intell. Syst. Comput., vol. 2, no. 1, pp. 12–19, 2021, doi: 10.52985/insyst.v2i1.150.
J. W. Fernanda, “Pemodelan Persepsi Pembelajaran Online Menggunakan Latent Dirichlet Allocation,” J. Stat. Univ. Muhammadiyah Semarang, vol. 9, no. 2, p. 79, 2021, doi: 10.26714/jsunimus.9.2.2021.79-85.
M. Istianda and A. Zastrawati, “Evaluasi Penyelenggaraan Pemilu Serentak 2019 Kota Makassar,” Sebatik, vol. 25, no. 1, pp. 92–101, 2021, doi: 10.46984/sebatik.v25i1.1203.
L. H. Husin et al., “Malpraktik Pemilu dan Korupsi: Analisis terhadap Proses Penghitungan dan Rekapitulasi pada Pemilu Indonesia 2019,” Integritas J. Antikorupsi, vol. 7, no. 1, pp. 57–78, 2021, doi: 10.32697/integritas.v7i1.720.
U. Malihatin S, Y. Findawati, and U. Indahyanti, “Topic Modeling in Covid-19 Vaccination Refusal Cases Using Latent Dirichlet Allocation and Latent Semantic Analysis,” J. Tek. Inform., vol. 4, no. 5, pp. 1063– 1074, 2023, doi: 10.52436/1.jutif.2023.4.5.951.
Y. Matira and I. Setiawan, “Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation,” Estimasi J. Stat. Its Appl., vol. 4, no. 1, pp. 2721–379, 2023, doi: 10.20956/ejsa.vi.24843.
S. Mifrah, “Topic Modeling Coherence: A Comparative Study between LDA and NMF Models using COVID’19 Corpus,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 5756–5761, 2020, doi: 10.30534/ijatcse/2020/231942020.
N. A. K. Febriyani and R. B. Hadiprakoso, “Rancang Bangun Aplikasi Naskah Dinas Elektronik Berbasis Web Menggunakan WDLC,” Ultim. InfoSys J. Ilmu Sist. Inf., vol. 12, no. 1, pp. 43–51, 2021, doi: 10.31937/si.v12i1.1747.
D. Qiu, H. Jiang, and S. Chen, “Fuzzy information retrieval based on continuous bag-of-words model,” Symmetry (Basel)., vol. 12, no. 2, 2020, doi: 10.3390/sym12020225.
S. Sunanto, R. Firdaus, and Makmur Setiawan Siregar, “Implementasi Logika Fuzzy Mamdani Pada Kendali Suhu dan Kelembaban Ruang Server,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 2, pp. 128– 136, 2021, doi: 10.37859/coscitech.v2i2.3362.
J. Akbar, T. A. M., Y. Tolla, A. E. Ahmad, A. Yaqin, and E. Utami, “Pemodelan Topik Menggunakan Latent Dirichlet Allocation pada Ulasan Aplikasi PeduliLindungi,” InComTech J. Telekomun. dan Komput., vol. 13, no. 1, p. 40, 2023, doi: 10.22441/incomtech.v13i1.15572.
R. Solihah, “Peluang dan tantangan pemilu serentak 2019 dalam perspektif politik,” J. Ilm. Ilmu Pemerintah., vol. 3, no. 1, p. 73, 2018, doi: 10.14710/jiip.v3i1.3234.
D. L. C. Pardede and M. A. I. Waskita, “Analisis Pemodelan Topik Untuk Ulasan Tentang Peduli Lindungi,” J. Ilm. Inform. Komput., vol. 28, no. 1, pp. 17–26, 2023, doi: 10.35760/ik.2023.v28i1.7925.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
