Comparison of Machine Learning Algorithms in Predicting Student
Perbandingan Algoritma Machine Learning dalam Memprediksi Kelulusan Mahasiswa
DOI:
https://doi.org/10.21070/ups.8509Keywords:
Data Mining, Graduation Prediction, Machine Learning, CRISP-DM, Confusion MatrixAbstract
This study predicts student graduation in the Informatics Study Program at Universitas Muhammadiyah Sidoarjo using Machine Learning algorithms: Naïve Bayes, Decision Tree, and Random Forest. The dataset contains academic records from the 2020–2021 cohort, including GPA and credits (SKS) from semesters 1–6. Data analysis follows the CRISP-DM methodology, covering business understanding, data understanding, preparation, modeling, evaluation, and deployment. Model evaluation uses confusion matrices with accuracy, precision, recall, and F1-score to compare algorithm performance. Results show Random Forest achieved the highest accuracy of 97.50% in the 80:20 scenario, followed by Decision Tree at 96.25% and Naïve Bayes at 86.25%. Random Forest also recorded high precision, recall, and an F1-score of 97%, confirming its stability and effectiveness. Therefore, Random Forest is considered the most optimal algorithm and is recommended as a decision support tool for monitoring and predicting student graduation in higher education.
Downloads
References
U. Putra and I. Yptk, “Penerapan algoritma klasifikasi untuk prediksi tingkat kelulusan mahasiswa menggunakan rappidminer,” vol. 6, no. 1, pp. 376–388, 2025, doi: 10.46576/djtechno.
D. Mardinah and M. Thoriq, “Algoritma Multi Layer Perceptron sebagai Prediksi Kelulusan Mahasiswa Universitas Adzkia Tepat Waktu berdasarkan jenis kelamin , Indeks Prestasi Semester , dan Jumlah SKS,” vol. 1, no. 2, pp. 26–35, 2024.
R. M. Ubaidilah, “Prediksi Kelulusan Mahasiswa Berdasarkan Data Kunjung dan Peminjaman Buku menggunakan Rapid Miner dengan Metode C.45 dan Random Forest,” Int. Res. Big-Data Comput. Technol. I-Robot, vol. 7, no. 2, pp. 14–20, 2023, doi: 10.53514/ir.v7i2.410.
A. Wahyudi, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree Dan Naïve Bayes,” J. Permata Indones., vol. 14, no. 2, pp. 132–138, 2023, doi: 10.59737/jpi.v14i2.276.
E. Ismanto and M. Novalia, “Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas,” Techno.Com, vol. 20, no. 3, pp. 400–410, 2021, doi: 10.33633/tc.v20i3.4576.
T. Wahyuningsih, D. Manongga, I. Sembiring, and S. Wijono, “Comparison of Effectiveness of Logistic Regression, Naive Bayes, and Random Forest Algorithms in Predicting Student Arguments,” Procedia Comput. Sci., vol. 234, pp. 349–356, 2024, doi: 10.1016/j.procs.2024.03.014.
J. M. Polgan et al., “Optimasi Prediksi Kelulusan Mahasiswa Menggunakan Random Forest untuk Meningkatkan Tingkat Retensi,” vol. 13, pp. 2364–2374, 2025.
M. A. Nurrohmat, “Aplikasi Pemrediksi Masa Studi dan Predikat Kelulusan Mahasiswa Informatika Universitas Muhammadiyah Surakarta Menggunakan Metode Naive Bayes,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 1, no. 1, pp. 29–34, 2015, doi: 10.23917/khif.v1i1.1179.
Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, and Susanti, “Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest,” SATIN - Sains dan Teknol. Inf., vol. 8, no. 2, pp. 122–131, 2022, doi: 10.33372/stn.v8i2.885.
A. Performance, E. Alshdaifat, D. Alshdaifat, A. Alsarhan, F. Hussein, and S. Moh, “The Effect of Preprocessing Techniques , Applied to Numeric,” Data, vol. 6, no. 11, 2021.
H. Yuliansyah, R. A. P. Imaniati, A. Wirasto, and M. Wibowo, “Predicting Students Graduate on Time Using C4.5 Algorithm,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, p. 67, 2021, doi: 10.20473/jisebi.7.1.67-73.
N. Sitohang, “Jurnal Sains Informatika Terapan ( JSIT ),” Penerapan Data Min. Untuk Peringatan Dini Banjir Menggunakan Metod. Klastering K-Means, vol. 2, no. 1, pp. 16–20, 2023.
R. Bakri, N. P. Astuti, and A. S. Ahmar, “Evaluating Random Forest Algorithm in Educational Data Mining: Optimizing Graduation on-time prediction using Imbalance Methods,” ARRUS J. Soc. Sci. Humanit., vol. 4, no. 1, pp. 108–116, 2024, doi: 10.35877/soshum2449.
U. Indahyanti, N. L. Azizah, and H. Setiawan, “Pendekatan Ensemble Learning Untuk Meningkatkan Akurasi Prediksi Kinerja Akademik Mahasiswa,” J. Sains dan Inform., vol. 8, no. 2, pp. 160–169, 2022, doi: 10.34128/jsi.v8i2.459.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
