Humanoid Object Detection Appplication Moving in Open Space using YOLOv8
Aplikasi Deteksi Objek Humanoid Bergerak pada Ruang terbuka Menggunakan YOLOv8
DOI:
https://doi.org/10.21070/ups.8481Keywords:
Deep Learning, Humanoid Object Detection, Open Space, YOLOv8Abstract
This study applies the YOLOv8 algorithm to detect humanoid objects in open environme 0nts, specifically in school areas such as parking lots. The main objective is to develop an intelligent system capable of identifying students based on four types of uniforms: none, grey, batik, and department-specific. Data were collected from CCTV footage and processed using Roboflow, resulting in 314 images with 1,649 bounding boxes. The dataset was divided into training and validation sets, with a .yaml configuration used to train the YOLOv8s model. Training was conducted with variations in image size, batch size, and epochs to optimize performance. Evaluation results showed a precision of 0.86, recall of 0.92, and mAP\@0.50 of 0.93. Visual testing indicated an overall detection accuracy of 85%, although minor errors occurred in distinguishing between batik and department uniforms. This study demonstrates the reliability of YOLOv8, with future research aiming to expand the dataset and object categories.
Downloads
References
D. Pongoh, M. Kasenda, S. Kasenda, G. Tondatuon, M. Taroreh, and E. Saleh, “PENERAPAN KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE/AI) DALAM DUNIA PENDIDIKAN,” 2023.
A. Pratiwi Saputri et al., “ANALISIS DETEKSI OBJEK CITRA DIGITAL MENGGUNAKANALGORITMA YOLO DAN CNN DENGAN ARSITEKTUR REPVGGPADA SISTEM PENDETEKSIAN DAN PENGENALAN EKSPRESI WAJAH,” Syntax Literate: Jurnal Ilmiah Indonesia, vol. 7, no. 9, Sep. 2022.
F. A. Saputra and J. C. Chandra, “Prototipe Sistem Keamanan Ruang Server Otomatis Menggunakan ESP32CAM dan Algoritma You Only Look Once (YOLO),” Jurnal TICOM: Technology of Information and Communication, vol. 11, no. 1, 2022.
N. J. Hayati, D. Singasatia, M. R. Muttaqin, T. Informatika, S. Tinggi, and T. Wastukancana, “OBJECT TRACKING MENGGUNAKAN ALGORITMA YOU ONLY LOOK ONCE (YOLO)v8 UNTUK MENGHITUNG KENDARAAN,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, 2023, [Online]. Available: https://universe.roboflow.com/
L. Susanti, N. K. Daulay, and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 640, Apr. 2023, doi: 10.30865/jurikom.v10i2.6032.
M. F. NURYASIN, C. MACHBUB, and L. YULIANTI, “Kombinasi Deteksi Objek, Pengenalan Wajah dan Perilaku Anomali menggunakan State Machine untuk Kamera Pengawas,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 1, p. 86, Jan. 2023, doi: 10.26760/elkomika.v11i1.86.
A. Yolov8 et al., “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur,” 2023.
R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.
R. Muwardi, I. P. Nugroho, K. S. Salamah, M. Yunita, R. Rahmatullah, and G. J. Chung, “Optimization of YOLOv4-Tiny Algorithm for Vehicle Detection and Vehicle Count Detection Embedded System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 3, pp. 639–648, Nov. 2024, doi: 10.26555/jiteki.v10i3.29693.
A. A. I. H. Aprilino Awan, “IMPLEMENTASI ALGORITMA YOLO DAN TESSERACT OCR PADA SISTEM DETEKSI PLAT NOMOR OTOMATIS,” Jurnal TEKNOINFO, vol. 16, 2022.
H. W. R. W. Sihombing R, “IMPLEMENTASI YOLO V8 UNTUK MENDETEKSI MATA UANG RUPIAH EMISI TAHUN 2022 BER-OUTPUT AUDIO,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, Aug. 2024.
W. Azis Rahmat, S. Madinah Ladjamuddin, and D. Teruna Awaludin, “PERBANDINGAN ALGORITMA DECISION TREE, RANDOM FOREST DAN NAIVE BAYES PADA PREDIKSI PENILAIAN KEPUASAN PENUMPANG MASKAPAI PESAWAT MENGGUNAKAN DATASET KAGGLE,” Jurnal Rekayasa Informasi, vol. 12, no. 2, 2023, [Online]. Available: www.kaggle.com,
M. R. Sholahuddin et al., “Optimizing YOLOv8 for Real-Time CCTV Surveillance: A Trade-off Between Speed and Accuracy,” Jurnal Online Informatika, vol. 8, no. 2, pp. 261–270, Dec. 2023, doi: 10.15575/join.v8i2.1196.
N. R. Muntiari, Indah Chairun Nisa, Ana Sriekaningih, Andri Yogi Adyatma Prasetyo, and Muhammad Yusril, “Penerapan Algoritma YOLOv8 Dalam Indentifikasi Wajah secara Real-Time menggunakan CCTV untuk Presensi Siswa,” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 3, pp. 1155–1165, Nov. 2024, doi: 10.51454/decode.v4i3.847.
R. Theofilus and R. Kurniawan, “Deteksi Sampah di Permukaan Sungai menggunakan Convolutional Neural Network dengan Algoritma YOLOv8 Studi Kasus: Sungai Ciliwung (Detection of Floating Wastes on River Surface using Convolutional Neural Network with YOLOv8 Algorithm (Case Study: Ciliwung River)),” 2024.
R. Irsabmalfi et al., “DETEKSI ANATOMI GIGI MENGGUNAKAN ARSITEKTUR YOLOV8 (YOU ONLY LOOK ONCE) UNTUK PENGENALAN JENIS-JENIS GIGI,” 2025.
E. Astiadewi, A. Rinaldi Dikananda, and D. Rohman, “ALGORITMA YOLOV8 UNTUK MENINGKATKAN ANALISA GAMBAR DALAM MENDETEKSI JERAWAT,” Jurnal Informatika Teknologi dan Sains, vol. 7, no. 1, pp. 346–353, 2025.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
