Sentiment Analysis of YouTube Social Media On Lumpur Lapindo Tourism Using the K-Nearest Neighbor (K-NN) Algorithm and Term Frequency – Inverse Document Frequency (TF-IDF)
Analisis Sentimen pada Media Sosial Youtube Terhadap Pariwisata Lumpur Lapindo Dengan Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Term Frequency – Invers Document Frequency
DOI:
https://doi.org/10.21070/ups.8423Keywords:
Youtube, Classification, K-Nearest Neighbor (K-NN), Term Frequenncy-Invers Document Frequency (TF-IDF), Sentiment analysisAbstract
Digital transformation in the current industrial era has had a significant impact on various aspects of human life, including communication patterns and social interactions. One rapidly growing digital platform is YouTube, which serves as a medium for sharing information in asynchronous video formats. This platform provides a space for users to interact through the comment feature, allowing the public to express opinions, criticisms, and suggestions regarding the content presented. To assess public perception of tourism in the Lapindo Mud area, sentiment analysis was conducted on YouTube user comments. This study utilizes the K-Nearest Neighbor (K-NN) algorithm for opinion classification. The research stages include data collection, text preprocessing to obtain clean and structured data, and word weighting using the Term Frequency–Inverse Document Frequency (TF-IDF) method. All these processes aim to produce accurate sentiment classification. The data used in this study is primary data obtained directly from the YouTube platform.
Downloads
References
A. N. Putra, "Analisis Sentimen Pengguna YouTube Terhadap Uang Baru Tahun Emisi 2022 Menggunakan Metode Naïve Bayes Classifier," Jurnal Teknologi dan Sistem Komputer, vol. 5, no. 1, pp. 45–52, Jan. 2024.
A. Hendrawan dan E. I. Sela, “Analisis Sentimen Komentar Youtube Tentang Resesi Global 2023 Menggunakan LSTM,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 1, hlm. 587–593, Jan. 2024.
H. Marlina, E. Elmayati, A. Zulius, and H. O. L. Wijaya, “Penerapan Algoritma Random Forest Dalam
Klasifikasi Penjurusan Di SMA Negeri Tugumulyo,” Brahmana: Jurnal Penerapan Kecerdasan Buatan, vol. 4, no. 2, pp. 138–143, Jun. 2023.
M. H. Mahendra, D. T. Murdiansyah, dan K. M. Lhaksmana, "Analisis Sentimen Tweet COVID-19
menggunakan K-Nearest Neighbors dengan TF-IDF dan Ekstraksi Fitur CountVectorizer," Dike: Jurnal Ilmu Multidisiplin, vol. 1, no. 2, pp. 37–43, Agustus 2023.
M. Djufri, "Penerapan Teknik Web Scraping untuk Penggalian Potensi Pajak (Studi Kasus pada Online Market Place Tokopedia, Shopee dan Bukalapak)," Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan, vol. 13, no. 2, pp. 65–75, Desember 2020.
A. E. Budiman dan A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” Jurnal Teknik Informatika dan Sistem Informasi (JuTISI), vol. 6, no. 3, pp. 1–8, Des. 2020.
M. Priandi and Painem, “Analisis Sentimen Masyarakat Terhadap Pembelajaran Daring di Era Pandemi Covid 19 pada Media Sosial Twitter Menggunakan Ekstraksi Fitur Countvectorizer dan Algoritma K-Nearest Neighbor,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), Jakarta, Indonesia, Sep. 15, 2021
M. A. Rosid, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,” in Proceedings of the International Conference on Engineering Technology and Social Science (ICETsAS), IOP Conf. Series: Materials Science and Engineering, vol. 874, 2020, doi: 10.1088/1757-899X/874/1/012017.
R. Riyaddulloh dan A. Romadhony, “Normalisasi teks bahasa Indonesia berbasis kamus slang: Studi kasus tweet produk gadget pada Twitter,” e-Proceeding of Engineering, vol. 8, no. 4, pp. 42173–42239, Agustus 2021.
F. Istighfarizky, N. A. S. ER, I. M. Widiartha, L. G. Astuti, I. G. N. A. C. Putra, dan I. K. G. Suhartana,
“Klasifikasi jurnal menggunakan metode KNN dengan mengimplementasikan perbandingan seleksi fitur,” Jurnal Elektronik Ilmu Komputer Udayana (JELIKU), vol. 11, no. 1, pp. 167–176, Agustus 2022.
A. N. H. Regita dan I. Santoso, “Analisis sentimen publik terhadap pengambilalihan jalan rusak di Lampung menggunakan algoritma K-Nearest Neighbors (KNN),” IKRA-ITH Informatika: Jurnal Komputer dan Informatika, vol. 7, no. 2, pp. 176–182, Juli 2023.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
