Customer Service Sentiment Analysis of Internet Service Providers Using Support Vector Machine and Naïve Bayes Algorithms
Analisis Sentimen Layanan Pelanggan Provider Internet Dengan Algoritma Support Vector Machine Dan Naïve Bayes
DOI:
https://doi.org/10.21070/ups.8289Keywords:
Analisis Sentimen, Text Mining, Naïve Bayes, Support Vector Machine, X.comAbstract
The rise in customer complaints and compliments about internet services underscores the need to understand public sentiment. Without proper analysis, Biznet may overlook opportunities to enhance customer satisfaction. This study analyzes customer sentiment toward Biznet using Text Mining techniques with Naïve Bayes and Support Vector Machine (SVM) algorithms. Data was collected from X.com (Twitter) via Tweepy and processed through cleaning, normalization, tokenization, sentiment labeling with VADER, and TF-IDF for feature extraction. The results indicate that SVM with a Sigmoid kernel achieved the highest accuracy (94.29%), followed by Linear SVM (93.92%) and Bernoulli Naïve Bayes (88.21%). Based on performance metrics, SVM with Sigmoid kernel proved to be the most effective. This analysis provides valuable insights to help Biznet enhance services and align improvements with customer expectations.
Downloads
References
F. D. Ananda And Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,” Matrik J. Manajemen, Tek. Inform. Dan Rekayasa Komput., Vol. 20, No. 2, 2021, Doi: 10.30812/Matrik.V20i2.1130.
B. W. Sari And F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” J. Pilar Nusa Mandiri, Vol. 15, No. 2, 2019, Doi: 10.33480/Pilar.V15i2.699.
S. Rahayu And K. Handoko, “Implementasi Data Mining Untuk Memprediksi Pengaruh Media Sosial Terhadap Semangat Belajar Anak,” J. Comasie, Vol. 11, No. 02, 2024.
M. Bohlouli, J. Dalter, M. Dornhöfer, J. Zenkert, And M. Fathi, “Knowledge Discovery From Social Media Using Big Data-Provided Sentiment Analysis (Somabit),” 2015. Doi: 10.1177/0165551515602846.
S. B. Kotsiantis, I. D. Zaharakis, And P. E. Pintelas, “Machine Learning: A Review Of Classification And Combining Techniques,” Artif. Intell. Rev., Vol. 26, No. 3, 2006, Doi: 10.1007/S10462-007-9052-3.
E. Rahm And H. Do, “Data Cleaning: Problems And Current Approaches,” Ieee Data Eng. Bull., Vol. 23, No. 4, 2000.
D. Jurafsky And J. H. Martin, “Speech And Language Processing An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition With Language Models Third Edition Draft Summary Of Contents.”
C. D. Manning, P. Raghavan, And H. Schütze, Introduction To Information Retrieval. 2008. Doi: 10.1017/Cbo9780511809071.
C. J. Hutto And E. Gilbert, “Vader: A Parsimonious Rule-Based Model For Sentiment Analysis Of Social Media Text,” In Proceedings Of The 8th International Conference On Weblogs And Social Media, Icwsm 2014, 2014. Doi: 10.1609/Icwsm.V8i1.14550.
A. Rajaraman And J. D. Ullman, Mining Of Massive Datasets, Vol. 9781107015357. 2011. Doi: 10.1017/Cbo9781139058452.
A. Mccallum And K. Nigam, “A Comparison Of Event Models For Naive Bayes Text Classification,” Aaai/Icml-98 Work. Learn. Text Categ., 1998, Doi: 10.1.1.46.1529.
C. Cortes And V. Vapnik, “Support-Vector Networks,” Mach. Learn., Vol. 20, No. 3, 1995, Doi: 10.1023/A:1022627411411.
J. W. Iskandar And Y. Nataliani, “Perbandingan Naïve Bayes, Svm, Dan K-Nn Untuk Analisis Sentimen Gadget Berbasis Aspek,” J. Resti (Rekayasa Sist. Dan Teknol. Informasi), Vol. 5, No. 6, 2021, Doi: 10.29207/Resti.V5i6.3588.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.