Multiple Linear Regression for Domestic Flight Ticket Price Prediction: A Case Study on the Surabaya–Jakarta Route
Regresi Linear Berganda untuk Prediksi Harga Tiket Penerbangan Domestik: Studi pada Rute Surabaya–Jakarta
DOI:
https://doi.org/10.21070/ups.8202Keywords:
Statistical Analysis, Google Colab, Ticket Price Prediction, Multiple Linear Regression, Surabaya– JakartaAbstract
Air travel is valued for its speed and comfort, especially on the busy Surabaya–Jakarta route. However, fluctuating ticket prices complicate planning and challenge airline pricing strategies. This study develops a multiple linear regression model to predict ticket prices using 10,000 observations processed in Google Colaboratory. The workflow includes data preprocessing, transformation, train–test splitting, and assumption testing. Log transformation and robust standard errors address normality and heteroskedasticity, while Ridge Regression mitigates multicollinearity. The final model achieves an R-squared of 96.4%, indicating high accuracy and stability without overfitting. Influential predictors include airline, departure time, flight duration, baggage allowance, and service class, though not all are statistically significant. The model offers practical insights for travelers seeking affordable options and for airlines developing more competitive pricing strategies. It also provides useful references for policymakers and industry stakeholders in promoting efficient and data-driven decisions across the aviation sector.
Downloads
References
A. C. Revandha and A. Syaputra, “Pengaruh Kinerja Petugas Check-In Counter Terhadap Kepuasan Penumpang Maskapai Pelita Air PT. Gapura Angkasa Bandar Udara Internasional Juanda Surabaya,” Indonesian Journal of Aviation Science and Engineering, vol. 1, no. 4, p. 7, Jun. 2024, doi: 10.47134/pjase.v1i4.2794.
E. Lastriani, D. Jurusan, M. STIE, and D. Putra, “Analisis Faktor-Faktor yang Dipertimbangkan Konsumen dalam Pemilihan Maskapai Penerbangan sebagai Alat Transportasi Udara di Kota Pekanbaru.”
D. Triyana, M. Muharrom, A. Haromainy, and H. Maulana, “Implementasi Metode Ensemble Majority Vote pada Algoritma Naive Bayes dan Random Forest untuk Analisis Sentimen Twitter Harga Tiket Pesawat Domestik,” 2024.
H. Setiawan, C. Fatichah, and A. Saikhu, “Feature Selection for Multilabel Classification of Student Feedback Using Filter and Metaheuristic Methods,” International Conference on Intelligent Cybernetics Technology & Applications (ICICYTA). [Online]. Available: https://ieeexplore.ieee.org/document/10913038
D. Miftahul Huda, G. Dwilestari, and A. Rizki Rinaldi, “Prediksi Harga Mobil Bekas Menggunakan Algoritma Regresi Linear Berganda,” Jurnal Informatika dan Rekayasa Perangkat Lunak.
T. Nurmansyah, R. Kurniawan, Y. A. Wijaya, P. Studi, T. Informatika, and I. Cirebon, “Analisis Data Stok Alat Kesehatan Menggunakan Metode Regresi Linier Berdasarkan Nilai RMSE,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 177–182, 2024.
M. Sholeh, E. Kumalasari Nurnawati, and U. Lestari, “Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner,” 2023. [Online]. Available: https://archive.ics.uci.edu/ml/datasheets.php
F. Ramdani and I. Q. Utami, Pengantar Data Science, 2022.
R. Kaestria and E. F. Himmah, “Implementasi Bahasa Pemrograman Python untuk Path Analysis,” Jurnal Komputasi, vol. 11, no. 2, pp. 105–117, 2023, doi: 10.23960/komputasi.v11i2.6634.
A. Wardhana and Z. Iba, Analisis Regresi dan Analisis Jalur untuk Riset Bisnis Menggunakan SPSS 29.0 & SmartPLS 4.0, pp. 1–65, Jul. 2024.
M. Regi Abdi Putra Amanta et al., “Analisis Pengaruh Motivasi dan Disiplin Kerja terhadap Kinerja Dosen di Institut Teknologi Sumatera dengan Metode Regresi Linier Berganda,” Prosiding Seminar Nasional Sains dan Teknologi Seri III Fakultas Sains dan Teknologi, vol. 2, no. 1, 2025.
Dyah N. Arum Janie, Statistik Deskriptif & Regresi Linier Berganda dengan SPSS. Semarang: Semarang University Press.
A. Fania and F. Sri Handayani, “Analisis Usabilitas Aplikasi Magang RRI Palembang Menggunakan Metode Regresi Linier Berganda,” Teknomatika, vol. 14, no. 01, 2024.
B. Teta, “Pengaruh Kelalaian Karyawan terhadap Produktivitas di Tambak Udang Venambak,” vol. 6, no. 3, pp. 613–623, 2024.
S. W. Ningtias, “Pengaruh Leverage, Profitabilitas dan Likuiditas terhadap Respon Investor,” Sekolah Tinggi Ilmu Ekonomi Indonesia (STIESIA) Surabaya.
Hermansyah, A. Abdullah, and P. Y. Utami, “Penerapan Metode Regresi Linier Berganda untuk Memprediksi Panen Kelapa Sawit,” vol. 20, pp. 1–15, Feb. 2024. Accessed: May 04, 2025. [Online]. Available: https://jurnalmahasiswa.stiesia.ac.id/index.php/jira/article/view/6211/6264
S. Mulyani, Y. Fitri, S. Selvia, N. Rahmadani, D. Lestari, and W. Meka, “Prediksi Potensi Timbulan Limbah Ampas Kopi sebagai Sumber Penghasil Senyawa Bioaktif di Kota Pekanbaru,” Jurnal Ilmu Lingkungan, vol. 22, no. 6, pp. 1412–1423, Nov. 2024, doi: 10.14710/jil.22.6.1412-1423.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.