Identification of Durian Leaf Diseases Using the Residual Network Algorithm (RESNET-50)
Identifikasi Penyakit Daun Durian Menggunakan Penerapan Algoritma Residual Network (RESNET-50)
DOI:
https://doi.org/10.21070/ups.8166Keywords:
durian leaf, disease detection, image classification, Resnet-50, RoboflowAbstract
Durian is one of Indonesia’s top horticultural commodities, but its productivity can decline due to leaf diseases that are difficult for farmers to identify visually. This study aims to develop an automated durian leaf disease classification system using a deep learning algorithm based on the ResNet-50 architecture. The dataset consists of 420 durian leaf images categorized into four classes: Algal Leaf Spot, Leaf Blight, Leaf Spot, and No Disease, sourced from the Roboflow platform. Preprocessing steps included annotation, augmentation, and resizing to 240x240 pixels. The model was trained using TensorFlow with pretrained ImageNet weights. Three data split scenarios (70:20:10, 75:15:10, and 80:10:10) were tested using both binary and multiclass classification approaches. Model performance was evaluated using a confusion matrix and metrics such as accuracy, precision, recall, and F1-score. The best binary classification achieved 99.8% accuracy and 99.9% F1-score, while the best multiclass model reached 99.6% accuracy and 96.9% macro F1-score.
Downloads
References
E. Yuniastuti, N. Nandariyah, and S. R. Bukka, “Karakterisasi Durian (Durio zibenthinus) Ngrambe di Jawa Timur, Indonesia,” Caraka Tani: Journal of Sustainable Agriculture, vol. 33, no. 2, p. 136, Sep. 2018, doi: 10.20961/carakatani.v33i2.19610.
N. Najira, E. Selviyanti, Y. B. Tobing, K. Kasmawati, R. Sianturi, and A. B. Suwardi, “Diversitas Kultivar tanaman Durian (Durio zubethinus Murr.) Ditinjau dari Karakter Morfologi”, doi: 10.29303/jbt.v20i2.1871.
Napitulu and Rodame Monitorir, “Bertanam Durian Unggul,” 2015.
Taslim, S. Saon, K. Mahamad, M.Muladi, and W. N. Hidayat, “Plant leaf identification system using convolutional neural network,” Eng. Informatics, vol. 10, Dec. 2021, doi: 10.11591/eei.v10i6.2332.
B. Febriana, “Identifikasi Penyakit Daun Apel Menggunakan Resnet 50 Dilated Convolution Neural Network,” Inst. Teknol. Nas. Bandung, no. 465, pp. 106–111, Accessed: May 10, 2025.
Jia-Rong X, Pei-Che C, Hung-Yi W, Quoc-Hung P, Yeh J.-L A, and M.-K. Hou, “Detection of Strawberry Diseases Using a Convolutional Neural Network,” pp. 1–14, 2020.
C. Nur Sahera, Y. Rahmawati, R. Dijaya, and S. dan Teknologi, “Optimasi Penerapan Algoritma Convolution Neural Network Dalam Klasifikasi Tingkat Kesegaran Daging Sapi,” Jurnal TEKINKOM, vol. 7, no. 1, 2024, doi : 10.37600/tekinkom.v7i1.1122.
Chollet and Francois, “Deep Learning with Python,” Shelter Island: Manning Publications Co.
Sena and Samuel, “Pengenalan Deep Learning Part 7 : Convolutional Neural Network (CNN),” 2017, Accessed: May 10,2025. [Online]. Available: https://medium.com/@samuelsena/pengenalan-deep-learning-part-7- convolutionalneural-network-cnn-b003b477dc94
Pratama Putra and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” Jurnal Algoritme, vol. 2, no. 2, pp. 102–112, 2022, [Online]. Available: https://www.kaggle.com/qramkrishna/corn-leaf-infection-dataset
He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
Egga Naufal Daffa Tanadi, Dhian Satria Yudha Kartika, and Abdul Rezha Efrat Najaf, “Sistem Pendeteksi Penyakit Kanker Kulit Menggunakan Convolutional Neural Network Arsitektur YOLOv8 Berbasis Website,” Repeater Publ. Tek. Inform. dan Jar, vol. 2, no. 3, pp. 166–177, 2024, doi: 10.62951/repeater.v2i3.124.
L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, and E. R. Swedia, “Sistem Pendeteksi Plat Nomor Polisi Kendaraan Dengan Arsitektur Yolov8,” Sebatik, vol. 27, no. 2, pp. 753–761, 2023, doi: 10.46984/sebatik.v27i2.2374.
R. Arthana, “Mengenal Accuracy, Precision, Recall, dan Specificity Serta yang Diprioritaskan Dalam Machine Learning,” Apr. 2019, Accessed: May 10, 2025.
Leung, “Micro, Macro & Weighted Averages of F1 Score, Clearly Explained,” Jan. 2022, Accessed: May 10, 2025.
A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
