Classification of Fiber Optic Cable Attenuation Quality Based on Termination Using K-Means Algorithm
Klasifikasi Kualitas Redaman Kabel Fiber Optik Berdasarkan Terminasi Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.21070/ups.8086Keywords:
K-Means, Classification, Data Mining, Attenuation Quality, Fiber OpticsAbstract
This study classifies the attenuation quality of fiber optic networks using the K-Means algorithm based on 400 field measurement data. The model is built to cluster data based on network parameters, using two approaches: all features and selected features. Evaluation is conducted using Sum of Squared Errors (SSE) and Silhouette Coefficient. Results show that feature selection improves clustering quality, with an SSE of 1935.5 and a Silhouette Coefficient of 0.3529, compared to an SSE of 3130.93 and a Silhouette Coefficient of 0.2616 when using all features. The data distribution is also more balanced (cluster 0: 197 data points, cluster 1: 203 data points). The model effectively distinguishes between high and low attenuation conditions, demonstrating that proper feature selection enhances clustering performance. Overall, K-Means proves effective in classifying attenuation quality and can support more efficient monitoring and maintenance of fiber optic networks.
Downloads
References
P. Yusman, D. U. Dari, D. Al Farabi, and R. Ardana, “ANALISIS MANAGEMENT DAN REDAMAN FIBER OPTIC PADA PT . JALUR NET INFOTEK,” BHAKTI NAGORI J. Pengabdi. Kpd. Masy., vol. 4, pp. 31–37, 2024, doi: 10.36378/bhakti_nagori.v4i1.3886.
Muhammad Ridhwan and Lela Nurpulaela, “Analisis Penggunaan Jaringan Fiber Optik Di Area Kawasan Bijb Kertajati,” J. Ilm. Wahana Pendidik., vol. 9, no. 14, pp. 467–479, 2023.
M. A. Rahmatulloh, D. Hanto, M. Yantidewi, Agitta Rianaris, and R.A. Firdaus, “Analisis Redaman Fiber Optik dengan Menggunakan Pemodelan Software Optisystem,” J. Kolaboratif Sains, vol. 6, no. 7, pp. 630–639, 2023, doi: 10.56338/jks.v6i7.3795.
M. Nurwahidah, U. A. Ahmad, R. E. Saputra, and P. Y. Pangestu, “Analisis Jarak Jangkauan Jaringan Fiber To The Home ( Ftth ) dengan Teknologi Gigabit Passive Optical Network ( Gpon ) Berdasarkan Link Power Budget,” Pros. Semin. Nas. Tek. Elektro dan Inform., vol. 8, no. September, pp. 203–207, 2021.
D. Setiawan, O. Yuliani, P. Studi Teknik Elektro, and F. Teknologi dan Industri ITNY, “Triple Play (3P) Di Kirana Garden Residence Yogyakarta,” Jmte, vol. 04, no. 02, pp. 20–29, 2023.
I. M. Zukri, “Analisis Pengaruh Penggunaan Passive Splitter Pada Optical Distribution Point (Odp) Terhadap Kinerja Jaringan Di Rumah Pelanggan,” J. Ilm. Poli Rekayasa, vol. 18, no. 1, p. 32, 2022, doi: 10.30630/jipr.18.1.249.
M. N. Ikhsanto and A. Setiawan, “Jaringan Akses Fiber To The Home (FTTH) Dengan Teknologi Gigabyte Passive Optical Network (GPON) PT. Telkom Kota Metro,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 4, no. 1, pp. 57–63, 2024, doi: 10.53514/jco.v4i1.497.
Suwandi, Y. Akbar, and D. I. Mulyana, “Optimasi Gigabit Passive Optical Network dan Algoritma Naïve Bayes dalam Analisis Jaringan FTTH,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 9, no. 1, pp. 186–192, Nov. 2024, doi: 10.35870/jtik.v9i1.3058.
H. Liu, J. Chen, J. Dy, and Y. Fu, “Transforming Complex Problems Into K-Means Solutions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 7, pp. 9149–9168, 2023, doi: 10.1109/TPAMI.2023.3237667.
S. M. Miraftabzadeh, C. G. Colombo, M. Longo, and F. Foiadelli, “K-Means and Alternative Clustering Methods in Modern Power Systems,” IEEE Access, vol. 11, no. September, pp. 119596–119633, 2023, doi: 10.1109/ACCESS.2023.3327640.
A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.
C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm,” Eurasip J. Wirel. Commun. Netw., vol. 2021, no. 1, 2021, doi: 10.1186/s13638-021-01910-w.
D. M. Putri, A. S. Ilmananda, and N. Prisanta, “Penggunaan Algoritma K-Means dan K-Medoids untuk Pengembangan Strategi Promosi Penerimaan Mahasiswa Baru,” SMATIKA J., vol. 14, no. 02, pp. 388–398, Dec. 2024, doi: 10.32664/smatika.v14i02.1474.
R. Sharma and S. Arora, “Analysis of K-Means Clustering Algorithm,” Int. J. Eng. Res. Technol., vol. 11, no. 06, pp. 150–153, 2022, doi: 10.17577/IJERTV11IS060047.
R. Cohn and E. Holm, “Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data,” Integr. Mater. Manuf. Innov., vol. 10, no. 2, pp. 231–244, 2021, doi: 10.1007/s40192-021-00205-8.
A. Pegado-Bardayo, A. Lorenzo-Espejo, J. Muñuzuri, and A. Escudero-Santana, “A review of unsupervised k-value selection techniques in clustering algorithms,” J. Ind. Eng. Manag., vol. 17, no. 3, p. 641, 2024, doi: 10.3926/jiem.6791.
B. Adi Nugroho, A. Endang Jayati, and P. Muliandi, “Analisa Kualitas Jaringan Akses Indihome Berdasarkan Teknologi Msan Dan Gpon Di Sto Majapahit,” Tek. Elektro, pp. 1–6, 2021.
R. D. Dana, D. Soilihudin, R. H. Silalahi, D. . Kurnia, and U. Hayati, “Competency test clustering through the application of Principal Component Analysis (PCA) and the K-Means algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012038, 2021, doi: 10.1088/1757-899x/1088/1/012038.
C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.
S. M. Javidan, A. Banakar, K. A. Vakilian, and Y. Ampatzidis, “Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning,” Smart Agric. Technol., vol. 3, no. March 2022, 2023, doi: 10.1016/j.atech.2022.100081.
E. U. Oti, M. O. Olusola, F. C. Eze, and S. U. Enogwe, “Comprehensive Review of K-Means Clustering Algorithms,” Int. J. Adv. Sci. Res. Eng., vol. 07, no. 08, pp. 64–69, 2021, doi: 10.31695/ijasre.2021.34050.
A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency,” J. Phys. Conf. Ser., vol. 1751, no. 1, 2021, doi: 10.1088/1742-6596/1751/1/012038.
Z. Ning, J. Chen, J. Huang, U. J. Sabo, Z. Yuan, and Z. Dai, “WeDIV – An improved k-means clustering algorithm with a weighted distance and a novel internal validation index,” Egypt. Informatics J., vol. 23, no. 4, pp. 133–144, 2022, doi: 10.1016/j.eij.2022.09.002.
L. P. Refialy, H. Maitimu, and M. S. Pesulima, “Perbaikan Kinerja Clustering K-Means pada Data Ekonomi Nelayan dengan Perhitungan Sum of Square Error (SSE) dan Optimasi nilai K cluster,” Techno.Com, vol. 20, no. 2, pp. 321–329, 2021, doi: 10.33633/tc.v20i2.4572.
J. Wala, H. Herman, R. Umar, and S. Suwanti, “Heart Disease Clustering Modeling Using a Combination of the K-Means Clustering Algorithm and the Elbow Method,” Sci. J. Informatics, vol. 11, no. 4, pp. 903–914, Dec. 2024, doi: 10.15294/sji.v11i4.14096.
W. B. Syamhuri, M. T. Furqon, and C. Dewi, “Pengelompokan Film Berdasarkan Alur Cerita menggunakan Metode Self Organizing Maps dan Silhouette Coefficient,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 12, pp. 5898–5904, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
S. Suraya, M. Sholeh, and U. Lestari, “Evaluation of Data Clustering Accuracy using K-Means Algorithm,” Int. J. Multidiscip. Approach Res. Sci., vol. 2, no. 01, pp. 385–396, 2023, doi: 10.59653/ijmars.v2i01.504.
A. S. Ritonga and I. Muhandhis, “Clustering Data Tweet E-Commerce Menggunakan Metode K-Means (Studi Kasus Akun Twitter Blibli Indonesia),” Smatika J., vol. 12, no. 01, pp. 75–84, 2022, doi: 10.32664/smatika.v12i01.665.
T. Seyam et al., “Next-Generation K-Means Clustering: Mojo-Driven Performance for Big Data,” Int. J. Intell. Inf. Syst., vol. 14, no. 1, pp. 7–19, Mar. 2025, doi: 10.11648/j.ijiis.20251401.12.
V. No, D. Prasetyawan, A. Mulyanto, and R. Gatra, “Edumatic : Jurnal Pendidikan Informatika Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster : Kombinasi K-Means dan Reduksi Dimensi Autoencoder,” Edumatic J. Pendidik. Inform., vol. 9, no. 1, pp. 198–207, 2025, doi: 10.29408/edumatic.v9i1.29713.
M. A. Amri, A. A. N. Risal, M. F. Bakri, and D. F. Surianto, “Mini-Batch K-Means Clustering Untuk Pengelompokan Kemandirian Daerah Di Sulawesi Selatan,” J. Inform. Polinema, vol. 11, no. 2, pp. 235–244, Feb. 2025, doi: 10.33795/jip.v11i2.6871.
D. Hartama and M. Anjelita, “Analysis of Silhouette Coefficient Evaluation with Euclidean Distance in the Clustering Method (Case Study: Number of Public Schools in Indonesia),” J. Mantik, vol. 6, no. 3, pp. 3667–3677, 2022, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/3318
H. Mulyani, R. A. Setiawan, and H. Fathi, “Optimization of K Value in Clustering Using Silhouette Score (Case Study: Mall Customers Data),” J. Inf. Technol. Its Util., vol. 6, no. 2, pp. 45–50, 2023, doi: 10.56873/jitu.6.2.5243.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
