Comparison of Artificial Intelligence Approach Models Based on Artificial Neural Networks and Classical Models in Predicting E-wallet Interest
Perbandingan Model Pendekatan Artificial Intelligence berbasis Jaringan Saraf Tiruan dan Model Klasik dalam Prediksi Minat E-wallet
DOI:
https://doi.org/10.21070/ups.7674Keywords:
Artificial Neural Network, Multiple Linear Regression, Security, Privacy, E-TrustAbstract
Rapid technological advances have brought about changes in all aspects, especially the payment sector. Electronic wallets or e-wallets are currently trending in society because of their curiosity and convenience. However, the implementation of e-wallets cannot be separated from several factors that influence consumer interest in using them. Some of the main factors that influence consumer decisions in using e-wallets include security, privacy and e-trust factors. This study aims to analyze the effect of security, privacy and e-trust on the interest in using e-wallets in Indonesia by comparing two methods, namely Artificial Neural Networks and Multiple Linear Regression using two software, namely SPSS and MATLAB. Comparative analysis was carried out to identify the method that has the best level of accuracy. The population used in this study was calculated using the Lemeshow formula, which produced 165 responses. The results of the study showed that the Artificial Neural Network method provided much better analysis results than Multiple Linear Regression with the results of the values obtained in each variable approaching the expected target numbers, while multiple linear regression provided less than optimal results, especially in the security and privacy variables.
Downloads
References
R. Arvyana, F. Damayanti, and T. S. Rochmah, “Analisis E-Wallet Berbasis TAM (Technology Adoption Model) di PT Telkom Indonesia Tbk,” Jurnal Lentera Bisnis , vol. 11, no. 3, p. 286, Oct. 2022, doi: 10.34127/jrlab.v11i3.622.
M. S. Alif and A. R. Pratama, “Analisis Kesadaran Keamanan di Kalangan Pengguna E-Wallet di Indonesia,” 2021.
I. T. Moon, M. Shamsuzzaman, M. M. R. Mridha, and A. S. Md. M. Rahaman, “Towards the Advancement of Cashless Transaction: A Security Analysis of Electronic Payment Systems,” Journal of Computer and Communications, vol. 10, no. 07, pp. 103–129, 2022, doi: 10.4236/jcc.2022.107007.
S. Putri Andika and Agusnia Kria, “Pengaruh Diskon Belanja dan Keamanan Dalam Menggunakan Shopeepay Sebagai Sistem Pembayaran Terhadap Perilaku Konsumsi di Kalangan Mahasiswa Unitri,” Jurnal Ilmu Manajemen dan Akutansi, vol. 11, no. 1, pp. 110–118, Mar. 2023.
S. Bodhi and D. Tan, “Keamana Data Pribadi dalam Sistem Pembayaran E-Wallet Terhadap Ancaman Penipuan dan Pengelabuhan (Cybercrime),” Unes Law Review, vol. 4, no. 3, pp. 297–307, Mar. 2022, doi: 10.31933/unesrev.v4i3.
B. Barkah et al., “Pengaruh E-Service Quality, E-Trust, dan E-WOM Terhadap E-Satisfaction Pengguna Aplikasi Shopee Di Kota Pontianak,” 2021.
N. Salshabia Analita and T. Indra Wijaksana, “Analisi Perbandingan E-Service Quality dan E-Trust Aplikasi LinkAja dengan Aplikasi Dana,” Jurnal Penelitian dan Kajian Ilmiah Universitas Muhammadiyah Sumatera Barat, vol. 14, no. 1, pp. 98–106, Oct. 2020.
I. Indriyanti, T. Wahyuni, E. Ermawati, N. Ichsan, and H. Fatah, “Analisis Perbandingan Metode TAM dan UTAUT dalam Mengukur Kesuksesan Penggunaan Aplikasi Ojek Online,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 14, no. 4, pp. 24–30, Jan. 2020, doi: 10.35969/interkom.v14i4.59.
R. N. P. B. Puspaningrum and A. D. R. Atahau, “Penggunaan E-Wallet dalam Transaksi E-Commerce: Analisis Unified Theory of Acceptance and Use of Technology (UTAUT),” Jurnal Ekonomi Pendidikan dan Kewirausahaan , vol. 11, no. 2, pp. 191–208, Oct. 2023, doi: 10.26740/jepk.v11n2.p191-208.
V. Nourani, H. Gökçekuş, and I. K. Umar, “Artificial intelligence based ensemble model for prediction of vehicular traffic noise,” Environ Res, vol. 180, Jan. 2020, doi: 10.1016/j.envres.2019.108852.
N. Cavus, Y. B. Mohammed, and M. N. Yakubu, “An artificial intelligence‐based model for prediction of parameters affecting sustainable growth of mobile banking apps,” Sustainability (Switzerland), vol. 13, no. 11, Jun. 2021, doi: 10.3390/su13116206.
Giovanni. Sartor and M. Kritikos, The impact of the General Data Protection Regulation (GDPR) on artificial intelligence : study. 2020.
G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-15729-6.
N. Cavus, Y. B. Mohammed, and M. N. Yakubu, “The impact of the General Data Protection Regulation (GDPR) on artificial intelligence,” Journal MDPI, vol. 13, no. 9, May 2021, doi: 10.2861/293.
R. H. Dananjaya, S. Sutrisno, and S. Fitriady, “PENERAPAN ARTIFICIAL NEURAL NETWORK (ANN) DALAM MEMPREDIKSI KAPASITAS DUKUNG FONDASI TIANG,” Matriks Teknik Sipil, vol. 10, no. 4, p. 419, Dec. 2022, doi: 10.20961/mateksi.v10i4.65034.
T. Putri Kamila, Y. Sri Rahayu, and U. Maulana Malik Ibrahim Malang, “Pengaruh Keamanan, Kepercayaan, dan Risiko Terhadap Penggunaan Layanan Mobile Banking Pada Mahasiswa di Kota Malang,” Jurnal Perbankan Syariah, vol. 5, no. 1, pp. 49–61, Dec. 2024.
S. Tinggi, I. Ekonomi, A.-W. Sibolga, L. Komang, and C. Dewi, “Analisis Pengaruh Keamanan, Kemudahan dan Kepercayaan Terhadap Keputusan Pembelian Melalui Aplikasi Belanja Online Shopee Dengan Variabel Moderasi Word of Mouth (WOM),” Jurnal Ekonomi & Ekonomi Syariah, vol. 4, no. 2, 2021, doi: 10.36778/jesya.v4i2.664.
D. Piupi Niasset, D. C. Y. Simanjuntak, O. V. Sianipar, and A. Ariski, “Analysis Of The Effect Of Privacy, Security, And Trust On The Intention To Transact Online At Bank BCA Medan,” 2023. [Online]. Available: http://journal.yrpipku.com/index.php/msej
R. Fermayani, R. R. Harahap, and R. Rahmat, “Analisis Pengaruh Privasi, Keamanan, dan Kepercayaan Terhadap Niat Untuk Bertransaksi Secara Online di Lazada,” Jurnal Menara Ekonomi, vol. 8, no. 1, pp. 66–78, Apr. 2022.
K. L. Dewi Candra and I. M. Suardika, “Analisis Pengaruh Keamanan, Kemudahan dan Kepercayaan Terhadap Keputusan Pembelian Melalui Aplikasi Belanja Online Shopee Dengan Variabel Moderasi Word of Mouth (WOM),” Jurnal Ekonomi & Ekonomi Syariah, vol. 4, no. 2, pp. 1398–1410, 2021, doi: 10.36778/jesya.v4i2.664.
P. Kesuma and N. Nurbaiti, “Minat Menggunakan E-Wallet Dana Di Kalangan Mahasiswa Di Kota Medan,” Jesya, vol. 6, no. 1, pp. 694–703, Jan. 2023, doi: 10.36778/jesya.v6i1.979.
S. I. Putri et al., “Faktor Penentu Minat Beli Konsumen Melalui E-Commerce Berbasis Marketplace,” Jurnal Ilmiah Poli Bisnis, vol. 14, no. 1, pp. 29–40, Apr. 2022, [Online]. Available: https://ejournal2.pnp.ac.id/index.php/jipb
N. Amin Fadilah, S. Garancang, and K. Abunawas, “Konsep Umum Populasi dan Sampel dalam Penelitian,” Jurnal Pilar : Jurnal Kajian Islam Kontemporer, vol. 14, no. 1, pp. 15–31, Jun. 2023.
N. Sudariana and M. M. Yoedani, “Analisis Statistik Regresi Linier Berganda,” Senima Transactions on Managemenr and Business, vol. 2, no. 2, Apr. 2022.
J. Zupan, “Introduction to Artificial Neural Network (ANN) Methods: What They Are and How to Use Them Introduction to Artificial Neural Network (ANN) Methods: What They Are and How to Use Them*,” Acta Chim Slov, 1994, [Online]. Available: https://www.researchgate.net/publication/251626579
N. Cavus et al., “Emotional Artificial Neural Networks and Gaussian Process-Regression-Based Hybrid Machine-Learning Model for Prediction of Security and Privacy Effects on M-Banking Attractiveness,” Sustainability (Switzerland), vol. 14, no. 10, May 2022, doi: 10.3390/su14105826.
H. Tamiru and M. O. Dinka, “Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia,” J Hydrol Reg Stud, vol. 36, Aug. 2021, doi: 10.1016/j.ejrh.2021.100855.
N. Hasanah, M. Zainal Abidin, and U. Banjarmasin, “Pengaruh Keamanan dan Kemudahan Bertransaksi terhadap Minat Beli Menggunakan Dompet Digital Ovo pada Kalangan Mahasiswa di Banjarmasin,” Jurnal Ekonomi dan Bisnis, vol. 15, no. 2, pp. 405–424, Sep. 2022.
L. T. Truc, “Empowering tomorrow: Unleashing the power of e-wallets with adoption readiness, personal innovativeness, and perceived risk to client’s intention,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 3, Sep. 2024, doi: 10.1016/j.joitmc.2024.100322.
S. Devica, M. Septynaputri Widodo, P. Studi Manajemen Pemasaran, and P. Ubaya Jalan Ngagel Jaya Selatan, “Pengaruh Perceived of Benefit dan E-Trust terhadap Minat Menggunakan Qris,” Jurnal Bisnis Perspektif, vol. 15, no. 2, pp. 89–99, Jul. 2023, [Online]. Available: http://jurnal.ukdc.ac.id/index.php/BIP
D. Nurhani and S. Harsono, “The Influence of E-service Quality and E-trust on BSI Mobile User Loyalty with Customer Satisfaction as a Mediator,” International Journal of Economics, Business and Management Research, vol. 08, no. 02, pp. 143–157, 2024, doi: 10.51505/ijebmr.2024.8212.
S. B. Utami, A. D. B. Bawono, and N. Sasongko, “Pengaruh Privasi, Keamanan, Keandalan, dan Transparansi Terhadap Minat Penggunaan Payment Fintech UMKM di Watukelir,” Widya Cipta: Jurnal Sekretari dan Manajemen, vol. 7, no. 2, pp. 228–239, Sep. 2023, doi: 10.31294/widyacipta.v7i2.15976.
S. Damerianta, D. Mukodim, and A. Harmadi, “The influence of perceptions of usefulness, user ease, and security on interest in using fund e-wallet with e-trust as intervening variable,” Technium Social Sciences Journal, vol. 34, pp. 708–717, Aug. 2022, [Online]. Available: www.techniumscience.com
Z. Zhou, C. Qiu, and Y. Zhang, “A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-49899-0.
N. Cavus, Y. B. Mohammed, and M. N. Yakubu, “An artificial intelligence‐based model for prediction of parameters affecting sustainable growth of mobile banking apps,” Sustainability (Switzerland), vol. 13, no. 11, Jun. 2021, doi: 10.3390/su13116206.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
