Student Graduation Prediction System For Faculty Of Saintek Muhammadiyah Sidoarjo University Using Backpropagation Artificial Neural Network Method
Sistem Kelulusan Mahasiswa Fakultas Saintek Universitas Muhammadiyah Sidoarjo Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation
DOI:
https://doi.org/10.21070/ups.7517Keywords:
predicting, backpropagation, Artificial Neural NetworkAbstract
universities in Sidoarjo, such as the Muhammadiyah University of Sidoarjo (UMSIDA), the graduation rate of students can have an impact on the accreditation of study programs. considering the importance of accreditation in student graduation. Predicting student graduation allows for adequate preparation and support for students to successfully complete their studies. This research utilizes an Artificial Neural Network (JST) with a backpropagation approach to predict student graduation. The input data for this JST training comes from the Faculty of Science and Technology, Muhammadiyah University of Sidoarjo (UMSIDA) regarding student graduation rates from 2015 to 2019. The test results show that the Mean Square Error (MSE) in the JST output is 0.000141295, in accuracy testing The accuracy value was 93.428901%. This shows that the backpropagation method with ANN can be used effectively to predict student graduation.
Downloads
References
P. Indrayati Sijabat, Y. Yuhandri, G. Widi Nurcahyo, and A. Sindar, “Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 1, pp. 96–107, 2020, doi: 10.31849/digitalzone.v11i1.3880.
P. N. L. Raja and S. Sinurat, “Implementasi Metode Backpropagation Untuk Memprediksi Penjualan Furniture Pada Pt . Indah Jaya Medan,” vol. 13, pp. 146–151, 2018, [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/669
A. S. Rachman, I. Cholissodin, and M. A. Fauzi, “Peramalan Produksi Gula Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Pada PG Candi Baru Sidoarjo,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 4, pp. 1683–1689, 2018, [Online]. Available: https://www.researchgate.net/publication/322963136_Peramalan_Produksi_Gula_Menggunakan_Metode_Jaringan_Syaraf_Tiruan_Backpropagation_Pada_PG_Candi_Baru_Sidoarjo
M. I. Diputra, C. Dewi, and R. C. Wihandika, “Prediksi Tingkat Keuntungan Usaha Peternakan Itik Alabio Petelur menggunakan Jaringan Syaraf Tiruan Backpropagation (Kasus di Kabupaten Hulu Sungai Utara …,” … Teknol. Inf. dan Ilmu …, no. February, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/959%0Ahttp://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/959/368
P. Rancangan Peraturan Menteri Pendidikan and dan Teknologi, “Kajian Akademik Penerimaan Mahasiswa Baru Program Diploma dan Program Sarjana pada Perguruan Tinggi Negeri”.
N. A. Abidin, M. Assidiq, and A. Qaslim, “Sistem Prediksi Kelulusan Mahasiswa Dengan Metode Backpropagation Neural Network,” J. Ilm. Maju, vol. 4, no. 2, pp. 1–5, 2021, [Online]. Available: https://ojs.balitbang.sulbarprov.go.id/index.php/maju/article/view/100
D. Puspitaningrum, Pengantar Jaringan Saraf Tiruan. Penerbit Andi, 2009.
W. Satria, “Jaringan Syaraf Tiruan Backpropagation Untuk Peramalan Penjualan Produk (Studi Kasus Di Metro Electronic Dan Furniture),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 14–19, 2021, doi: 10.46576/djtechno.v1i1.966.
C. Oktaviani and Afdal, “Prediksi Curah Hujan Bulanan Menggunakan Jaringan Syaraf Tiruan dengan Beberapa Fungsi Pelatihan Backpropagation,” J. Fis. Unand, vol. 2, no. 4, pp. 228–237, 2013, [Online]. Available: http://jfu.fmipa.unand.ac.id/index.php/jfu/article/view/49
D. Puspitaningrum, “Pengantar Jarinngan Saraf Tiruan,” J. Transform., vol. 1, no. 2, p. 114, 2005, doi: 10.26623/transformatika.v1i2.8.
Downloads
Additional Files
Posted
License
Copyright (c) 2025 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.