Preprint has been published in a journal as an article
Preprint / Version 1

Sentiment Analysis of Student Advisory Services at UMSIDA Using the Support Vector Machine (SVM) Method


Analisis Sentimen Layanan Perwalian Mahasiswa UMSIDA Menggunakan Metode Support Vector Machine (SVM)

##article.authors##

DOI:

https://doi.org/10.21070/ups.7397

Keywords:

Analysis Sentiment, Counseling guidance, SVM, TF-IDF

Abstract

The myUMSIDA application supports academic activities at Universitas Muhammadiyah Sidoarjo, but student reviews indicate complaints about its services and facilities. Sentiment analysis is needed to classify these reviews as positive or negative, providing insights for service improvement. This study applies the Support Vector Machine (SVM) algorithm with a linear kernel, known for its high accuracy, combined with the TF-IDF feature extraction method for better text classification. A total of 1,300 reviews from 2023 underwent labeling, preprocessing, transformation, and classification. The dataset was split into three training-testing scenarios: 70:30, 60:40, and 50:50.Performance evaluation showed that the 70:30 scenario yielded the best results, with 86.92% accuracy, 86.60% precision, 84.72% recall, and an 85.7% F1-Score. These findings demonstrate the effectiveness of SVM with a linear kernel and TF-IDF in sentiment analysis, offering a foundation for improving myUMSIDA’s services.

Downloads

Download data is not yet available.

References

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.

T. J. Pamungkas and A. Romadhony, “Analisis Sentimen Berbasis Aspek Terhadap Ulasan Restoran Berbahasa Indonesia menggunakan Support Vector Machines.” Accessed: Nov. 19, 2024. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15238

A. A. Annur, A. Alim Murtopo, and N. Fadilah, “ANALISIS SENTIMEN APLIKASI E-LEARNING QUIPPER SELAMA PANDEMI COVID-19 DENGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM),” 2022.

A. Rafid Rizqullah, A. Wedhasmara, R. Izwan Heroza, A. Putra, and P. Putra, “ANALISIS MASALAH PADA DATA REVIEW APLIKASI TERHADAP LAYANAN E-COMMERCE MENGGUNAKAN METODE TEXT CLASSIFICATION,” 2022.

J. Liu, X. Luo, P. Lin, and Y. Fan, “Fine-Grained Sentiment Analysis: Recent Progress,” 2022. Accessed: Nov. 19, 2024. [Online]. Available: https://publications.waset.org/10012408/pd.

M. Alkaff, A. Rizky Baskara, and Y. Hendro Wicaksono, “Sentiment Analysis of Indonesian Movie Trailer on YouTube Using Delta TF-IDF and SVM,” in 2020 5th International Conference on Informatics and Computing, ICIC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICIC50835.2020.9288579.

D. Darwis, E. Shintya Pratiwi, A. Ferico, and O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” 2020.

T. Meisya, P. Aulia, N. Arifin, and R. Mayasari, “PERBANDINGAN KERNEL SUPPORT VECTOR MACHINE (SVM) DALAM PENERAPAN ANALISIS SENTIMEN VAKSINISASI COVID-19,” 2021, [Online]. Available: https://doi.org/10.31598

V. W. Fitri, E. Cahyanti, and Q. G. Adiwijaya, “On The Feature Extraction For Sentiment Analysis of Movie Reviews Based on SVM,” 2020. doi: 10.1109/ICoICT49345.2020.9166397.

S. S. Vavilapalli, P. Reddykorepu, S. Saggam, M. Pentyala, and S. A. Devi, “Summarizing Sentiment Analysis on Movie Critics Data,” in Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021. doi: 10.1109/ICICT50816.2021.9358563.

F. Firmansyah et al., “Comparing Sentiment Analysis of Indonesian Presidential Election 2019 with Support Vector Machine and K-Nearest Neighbor Algorithm,” in 6th International Conference on Computing, Engineering, and Design, ICCED 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICCED51276.2020.9415767.

M. Iqbal Ahmadi et al., “SENTIMENT ANALYSIS ONLINE SHOP ON THE PLAY STORE USING METHOD SUPPORT VECTOR MACHINE (SVM),” Seminar Nasional Informatika, vol. 2020, 2020, Accessed: Nov. 19, 2024. [Online]. Available: https://publications.waset.org/10012408/fine-grained-sentiment-analysis-recent-progress

Y. Handayani, A. R. Hakim, and Muljono, “Sentiment analysis of Bank BNI user comments using the support vector machine method,” in Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 202–207. doi: 10.1109/iSemantic50169.2020.9234230.

A. Dwi Hartanto, E. Utami, S. Adi, S. Raharjo, M. Yusa, and A. Kamaludin, “Classifying User Personality Based on Media Social Posts Using Support Vector Machine Algorithm Based on DISC Approach,” in 2020 2nd International Conference on Cybernetics and Intelligent System, ICORIS 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICORIS50180.2020.9320760.

2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2020.

R. Dave, M. Khare, and S. K. Mitra, “Mutual Information Based Kernel for Image Classification,” in 2020 7th International Conference on Soft Computing and Machine Intelligence, ISCMI 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 218–223. doi: 10.1109/ISCMI51676.2020.9311567.

A. A. Sa’id, Z. Rustam, V. V. P. Wibowo, Q. S. Setiawan, and A. R. Laeli, “Linear Support Vector Machine and Logistic Regression for Cerebral Infarction Classification,” in 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 827–831. doi: 10.1109/DASA51403.2020.9317065.

Posted

2025-02-14