Preprint has been published in a journal as an article
Preprint / Version 1

Classification of Vacational High School Graduates’ Ability in Industry using Extreme Gradient Boosting (XGBoost), Random Forest And Logistic Regression

Klasifikasi Kemampuan Lulusan SMK di Industri Menggunakan Extreme Gradient Boosting (XGBoost), Random Forest dan Logistic Regresssion

##article.authors##

DOI:

https://doi.org/10.21070/ups.734

Keywords:

Classification, Graduate Quality, Machine Learning, Vocational High School (SMK)

Abstract

The world of education is one of the main sources in presenting Human Resources. Vocational High School  is one of the school levels that presents various majors that are ready to compete in the industrial world. therefore a school institution needs to have a system to find out how much the quality of education provided to students is able to compete in the industrial world. The goal is that school institutions can strategize to produce better quality students in the following year. In this study there are 4 classes, namely working, not working, students, and entrepreneurs. There are several stages in building a classification system including the preprocessing, processing and evaluation stages. This research uses three  algorithms namely XGBoost, Random Forest, and Logistic Regression. The results of the three methods get an accuracy score of 67% produced by the XGBoost and Random Forest algorithms, 50% accuracy score by Logistic Regression

Downloads

Download data is not yet available.

References

Y. Sangsurya, M. Muazza, and R. Rahman, “Perencanaan Sumber Daya Manusia Dalam Peningkatan Mutu Pendidikan Di Sd Islam Mutiara Al Madan Kota Sungai Penuh,” J. Manaj. Pendidik. Dan Ilmu Sos., vol. 2, no. 2, pp. 766–778, 2021, doi: 10.38035/jmpis.v2i2.644.

S. A. Nurfatimah, S. Hasna, and D. Rostika, “Membangun Kualitas Pendidikan di Indonesia dalam Mewujudkan Program Sustainable Development Goals (SDGs),” J. Basicedu, vol. 6, no. 4, pp. 6145–6154, 2022, doi: 10.31004/basicedu.v6i4.3183.

H. Priyono, R. Sari, and T. Mardiana, “Klasifikasi Pemilihan Jurusan Sekolah Menengah Kejuruan Menggunakan Gradient Boosting Classifier,” J. Inform., vol. 9, no. 2, pp. 131–139, 2022, doi: 10.31294/inf.v9i2.12654.

L. W. Kusuma, “Prediksi Kemampuan Lulusan SMK untuk Dapat Bersaing Di Dunia Kerja dengan Menggunakan Naïve Bayes : Studi Kasus SMK Buddhi Tangerang,” Prediksi Kemamp. Lulusan SMK untuk Dapat Bersaing Di Dunia Kerja dengan Menggunakan Naïve Bayes Stud. Kasus SMK Buddhi Tangerang, vol. 1, pp. 56–63, 2019.

Y. Septiani and P. F. Ariyani, “Penerapan Algoritma Naive Bayes Menentukan Klasifikasi Tingkat Kelulusan Siswa SMK Media Informatika Jakarta Application of The Naive Bayes Algorithm Determining Classification of Students ’ Graduation Level of Jakarta Media Informatika Vocational School,” no. September, pp. 607–613, 2022.

E. Purwaningsih and E. Nurelasari, “Penerapan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa,” Syntax J. Inform., vol. 10, no. 01, pp. 46–56, 2021, doi: 10.35706/syji.v10i01.5173.

I. Muslim and K. Karo, “Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan,” J. Softw. Eng. Inf. Commun. Technol., vol. 1, no. 1, pp. 10–16, 2020.

M. Rizky Mubarok, Muliadi, and R. Herteno, “Hyper-Parameter Tuning pada XGBoost Untuk Prediksi Keberlangsungan Hidup Pasien Gagal Jantung,” Kumpul. J. Ilmu Komput., vol. 9, no. 2, pp. 391–401, 2022.

P. R. Sihombing and I. F. Yuliati, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 417–426, 2021, doi: 10.30812/matrik.v20i2.1174.

A. K. Santoso, A. Noviriandini, A. Kurniasih, B. D. Wicaksono, and A. Nuryanto, “Klasifikasi Persepsi Pengguna Twitter Terhadap Kasus Covid-19 Menggunakan Metode Logistic Regression,” JIK (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 234–241, 2021.

A. Tjalla and M. Mahdiyah, “Data Kategorik dalam Penelitian : Review Bibliometrik,” vol. 9, no. 1, pp. 796–802, 2023, doi: 10.58258/jime.v9i1.4814/http.

A. N. Kasanah, M. Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2019, doi: 10.29207/resti.v3i2.945.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

E. Agustin, A. Eviyanti, and N. L. Azizah, “Deteksi Penyakit Epilepsi Melalui Sinyal EEG Menggunakan Metode DWT dan Extreme Gradient Boosting,” vol. 7, pp. 117–127, 2023, doi: 10.30865/mib.v7i1.5412.

M. Noveanto, H. Sastypratiwi, and H. Muhardi, “Uji Akurasi Klasifikasi Emosi Pada Lirik Lagu Bahasa Indonesia Emotion Classification Accuracy Test in Indonesian Song Lyrics,” vol. 10, no. 3, pp. 311–318, 2022, doi: 10.26418/justin.v10i3.56804.

Posted

2023-04-11