DOI of the published article https://doi.org/10.47065/bits.v4i4.3212
Fraud Classification on Bank Accounts using Ensemble Learning Approach
Klasifikasi Penipuan pada Rekening Bank menggunakan Pendekatan Ensemble Learning
DOI:
https://doi.org/10.21070/ups.733Keywords:
Bank Account, Extreme Gradiant Boosting, Fraud, Classification, Random ForestAbstract
Accounts are a collection of numbers commonly used for all transactions in the banking world. In the process of opening it there are attempts at criminal acts. In an effort to prevent of fraud can be solved using data mining techniques, namely classification. Therefore, this research is made to classify bank accounts for fraud prevention. The detection results are classified into two classes, namely, prospective customers indicated fraud and prospective customers not indicated fraud. The classification methods used in this study are XGBoost and random forest with parameter tuning processed by randomized search cross validation.This study obtained a train score of 99.50% and a test score of 99.59% for XGBoost while Random Forest obtained a train score of 99.46% and a test score of 99.59%. These results show that the classification results of XGBoost are better than random forest.
Downloads
References
R. Chaisari, “Tindak Pidana Penipuan Rekening Bank (Suatu Penelitian Di Wilayah Hukum Polresta Banda Aceh),” Universitar syiah kuala, 2017.
J. Handoko, K. Kevin, P. Paulus, and Z. Salsabila, “Sistem Deteksi Nomor Telepon dan Rekening Bank Terindikasi Penipuan Berbasis Aplikasi Android dan Web,” J. SIFO Mikroskil, vol. 23, no. 2, pp. 183–196, 2022, doi: 10.55601/jsm.v23i2.913.
A. Prakosa, “Analisis Pengaruh Persepsi Teknologi Dan Persepsi Risiko Terhadap Kepercayaan Pengguna M-Banking,” J. Manaj., vol. 9, no. 2, 2019, doi: 10.26460/jm.v9i2.1030.
L. Septriyana, “Pengambilalihan Kredit Oleh Karyawan Alih Daya (Outsourcing) Pt Bank Mandiri Yang Berakibat Pada Tindak Pidana Penipuan,” Indones. Priv. Law Rev., vol. 1, no. 2, pp. 99–106, 2020, doi: 10.25041/iplr.v1i2.2056.
Suparyanto dan Rosad (2015, “ANALISIS PENERAPAN PRINSIP KEHATI-HATIAN BANK PADA LAYANAN E-BANKING DI PT BANK BNI SYARIAH CABANG MATARAM,” Suparyanto dan Rosad (2015, vol. 5, no. 3, pp. 248–253, 2020.
A. Kurniawan and Y. Yulianingsih, “Pendugaan Fraud Detection pada kartu kredit dengan Machine Learning,” Kilat, vol. 10, no. 2, pp. 320–325, 2021, doi: 10.33322/kilat.v10i2.1482.
M. Febriady, Samsuryadi, and D. P. Rini, “Klasifikasi Transaksi Penipuan Pada Kartu Kredit Menggunakan Metode Resampling Dan Pembelajaran Mesin,” J. Media Inform. Budidarma, vol. 6, pp. 1010–1016, 2022, doi: 10.30865/mib.v6i2.3765.
T. S. Lestari and D. A. N. Sirodj, “Klasifikasi Penipuan Transaksi Kartu Kredit Menggunakan Metode Random Forest,” J. Ris. Stat., vol. 1, no. 2, pp. 160–167, 2022, doi: 10.29313/jrs.v1i2.525.
M. Syukron, R. Santoso, and T. Widiharih, “PERBANDINGAN METODE SMOTE RANDOM FOREST DAN SMOTE XGBOOST UNTUK KLASIFIKASI TINGKAT PENYAKIT HEPATITIS C PADA IMBALANCE CLASS DATA,” vol. 9, pp. 227–236, 2020.
N. N. Pandika Pinata, I. M. Sukarsa, and N. K. Dwi Rusjayanthi, “Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 3, p. 188, 2020, doi: 10.24843/jim.2020.v08.i03.p04.
F. Zamachsari and N. Puspitasari, “Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 203–212, 2021, doi: 10.29207/resti.v5i2.2952.
G. A. Shafila, “IMPLEMENTASI METODE EXTREME GRADIENT BOOSTING ( XGBOOST ) UNTUK KLASIFIKASI PADA DATA BIOINFORMATIKA ( Studi Kasus : Penyakit Ebola , GSE 122692 ),” Dspace.Uii.Ac.Id, 2020, [Online]. Available: https://dspace.uii.ac.id/bitstream/handle/123456789/29276/16611022 Gregy Addis Shafila.pdf?sequence=1&isAllowed=y.
J. Paul Mueller and L. Massaron, Algorithm dummies. Canada: john willey&sons,inc., 2017.
V. YUGESH, “A Complete Guide to Categorical Data Encoding,” DEVELOPERS CORNER, 2021. https://analyticsindiamag.com/a-complete-guide-to-categorical-data-encoding/.
O. V. Putra, T. Harmini, and A. Saroji, “Outlier Detection On Graduation Data Of Darussalam Gontor University Using One-Class Support Vector Machine,” Procedia Eng. Life Sci., vol. 2, no. 2, pp. 89–92, 2021, doi: 10.21070/pels.v2i0.1139.
E. Agustin, A. Eviyanti, and N. L. Azizah, “Deteksi Penyakit Epilepsi Melalui Sinyal EEG Menggunakan Metode DWT dan Extreme Gradient Boosting,” vol. 7, pp. 117–127, 2023, doi: 10.30865/mib.v7i1.5412.
S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning. New york, 2014.
R. E. Prasetyo, “[Belajar DM] Evaluasi Model Data Mining,” 2022. https://rudyekoprasetya.wordpress.com/2021/04/13/belajar-dm-evaluasi-model-data-mining/.
H. Mukhtar et al., “Jurnal Computer Science and Information Technology ( CoSciTech ) Peramalan Kedatangan Wisatawan ke Suatu Negara Menggunakan Metode Support Vector,” vol. 3, no. 3, pp. 274–282, 2022.
A. Arimuko, A. S. W. Wibawa, and A. Firmansyah, “Analisis Perbandingan Penentuan Hiposentrum Menggunakan Metode Grid Search, Geiger, dan Random Search: Studi Kasus pada Letusan Gunung Sinabung 2017,” Diffraction, vol. 1, no. 2, pp. 22–28, 2019, doi: 10.37058/diffraction.v1i2.1290.
Downloads
Additional Files
Posted
License
Copyright (c) 2023 UMSIDA Preprints Server

This work is licensed under a Creative Commons Attribution 4.0 International License.
