Preprint has been submitted for publication in journal
Preprint / Version 1

Sentiment Analysis on YouTube Comments in MPL Season 13 Tournament Using Ensemble Machine Learning Method

Analisis Sentimen pada Komentar YouTube dalam Turnamen MPL Season 13 Dengan Metode Ensemble Machine learning

##article.authors##

DOI:

https://doi.org/10.21070/ups.6938

Keywords:

Sentiment, Ensemble Machine Learning, Preprocessing, Classification, MPL Season 13

Abstract

This study conducted sentiment analysis on YouTube comments related to MPL Season 13 using an Ensemble Learning method. The aim was to identify sentiment patterns and team popularity based on positive support. Data was collected using the YouTube Data API v3, resulting in 6,424 comments, which after preprocessing were reduced to 5,185 comments, consisting of 3,131 positive and 2,064 negative comments. The SMOTE oversampling technique was used to address class imbalance. Classification was performed using a majority voting method from several algorithms. The results showed an accuracy of 86.70 percent for hard voting and 86.17 percent for soft voting. The labeling process combined automatic and manual methods, improving classification accuracy. The analysis revealed EVOS had the highest number of supporters with 877, followed by RRQ with 743 and ONIC with 556. This study contributes to the development of sentiment analysis in e-sports and opens opportunities for further research.

Downloads

Download data is not yet available.

References

Y. Anisa, “Peran Channel Youtube Sebagai Media Alternatif untuk Membantu Proses Pembelajaran Matematika dan Media Informasi pada Tingkat Perguruan Tinggi,” 2022. [Online]. Available: https://ejournal.unib.ac.id/index.php/jpmr

G. Sanjaya and K. Muslim Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” e-Proceeding Eng., vol. 7, no. 3, pp. 9698–9710, 2020, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10703

R. Yusrinawati, “Analisis Perilaku Konsumtif Pemain Game Mobile Legends Bang Bang di ESports Indonesia Jember یلیب,” Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2023.

D. Wahyuni, “TANTANGAN DAN PELUANG ESPORTS DALAM KEOLAHRAGAAN NASIONAL CHALLENGES AND OPPORTUNITIES OF ESPORTS IN NATIONAL SPORTS,” Kajian, vol. 25, no. 4, pp. 341–353, 2020, [Online]. Available: https://beritagar.id/artikel/arena/

J. Budiman, R. Limgestu, and I. Tri Sagianto, “Perilaku Keputusan Investasi Investor Pasar Saham Indonesia,” J. Ilm. Akunt. dan Keuang., vol. 5, no. 9, pp. 3518–3526, 2023, [Online]. Available: https://journal.ikopin.ac.id/index.php/fairvalue

F. Gunardi, “PENGARUH E-SPORTS MARKETING DAN KEPUASAN PELANGGAN TERHADAP BRAND LOYALTY RAZER INC,” 2020.

D. Puspita Nilamsari and I. Parma Dewi, “Jurnal Vocational Teknik Elektronika dan Informatika,” J. Vocat. Tek. Elektron. dan Inform., vol. 11, no. 1, pp. 96–102, 2023, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/index

M. Yasir and R. Suraji, “Perbandingan Metode Klasifikasi Naive Bayes, Decision, Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 pada Media Sosial Youtube,” J. Cahaya Mandalika, vol. 3, no. 2, pp. 180–192, 2023.

A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 475–488, 2020, doi: 10.28932/jutisi.v6i3.2892.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

D. Dwi Kurnianto and S. Waluyo, “3 rd Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) 30 Agustus 2023-Jakarta,” 2023.

R. A. Fauzan and M. Mufti, “Analisis Sentimen Komentar Youtube Program Kampus Merdeka Berbasis Web Menggunakan Algoritma Multinomial Naïve Bayes,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 864–871, 2023, [Online]. Available: https://senafti.budiluhur.ac.id/index.php/senafti/article/view/929/563

M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, 2020, doi: 10.1088/1757-899X/874/1/012017.

Chely Aulia Misrun, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen komentar youtube terhadap Anies Baswedan sebagai bakal calon presiden 2024 menggunakan metode naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 207–215, Apr. 2023, doi: 10.37859/coscitech.v4i1.4790.

S. M. Harahap and R. Kurniawan, “Analisis Sentimen Komentar Youtube Terhadap Food Vlogger Dengan Menggunakan Metode Naïve Bayes,” MEANS (Media Inf. Anal. dan Sist., vol. 9, no. 1, pp. 87–96, 2024, doi: 10.54367/means.v9i1.3912.

D. Firmansyah, F. Sutrisno, and S. Waluyo, “ANALISIS SENTIMEN MASYARAKAT MENGENAI KASUS KEKUASAAN NARKOBA PADA KOMENTAR YOUTUBE MENGGUNAKAN METODE K-NEAREST NEIGHBOURS,” 2024.

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” J. Resti, vol. 1, no. 3, pp. 648–654, 2021.

B. Franko, N. Wilyanto, H. Irsyad, U. Multi, and D. Palembang, “Analisis Sentimen Terhadap Naturalisasi Pemain pada Youtube Menggunakan Decision Tree dan Naive Bayes Sentiment Analysis of Player Naturalization on Youtube Using Decision Trees and Naive Bayes,” vol. 03, no. September, pp. 8–16, 2024, doi: 10.57203/session.v3i1.2024.8-16.

B. I. Jimmy Alga, Cindi Wulandari, “Analisis Sentimen Aplikasi Youtube di Google Play Store Menggunakan Machine Learning,” RESOLUSI Rekayasa Tek. Inform. dan Inf. - ISSN 2745-7966, vol. 6, no. 1, pp. 197–207, 2024, [Online]. Available: https://djournals.com/resolusi

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.

M. R. Nurhusen, J. Indra, and K. A. Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression,” J. Media Inform. Budidarma, vol. 7, no. 1, p. 276, 2023, doi: 10.30865/mib.v7i1.5491.

R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.

N. Agustina and C. N. Ihsan, “Pendekatan Ensemble untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, p. 263, 2023, doi: 10.25126/jtiik.20231026215.

Posted

2025-01-16