Preprint has been published in a journal as an article
Preprint / Version 1

Sentiment Analysis of Wordpress Application Satisfaction Level Using K-Nearest Neighbor and Naive Bayes Methods


Analisis Sentimen Tingkat Kepuasan Aplikasi Wordpress Menggunakan Metode K-Nearest Neighbor dan Naive Bayes

##article.authors##

DOI:

https://doi.org/10.21070/ups.6904

Keywords:

Sentiment Analysis, knn, Naive Bayes, Satisfaction level, Wordpress

Abstract

User satisfaction reflects emotions when comparing services received with expectations, so understanding user satisfaction is important for app development. This research aims to evaluate user satisfaction with WordPress apps on the Google Play Store and identify areas for improvement. Sentiment analysis with KNN and Naïve bayes algorithms as the method used to extract information from 5,000 user reviews downloaded from Google Play Store,. The results showed the majority of reviews had positive sentiments, with Naïve Bayes providing better results than KNN, achieving 88% accuracy, 89.45% precision, 88% recall, and 83% F1-Score on a 90:10 data split. The word cloud of positive reviews featured words such as “great”, “good”, “helpful”, “app”, and “good”, reflecting user satisfaction with the ease and benefits of the app, while negative reviews featured words such as “difficult”, “try”, and “fail” indicating technical difficulties and user dissatisfaction.

Downloads

Download data is not yet available.

References

E. Hasibuan and E. A. Heriyanto, “ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER,” JTS, vol. 1, no. 3, 2022.

N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “MALCOM: Indonesian Journal of Machine Learning and Computer Science The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Goo,” vol. 2, pp. 47–54, 2022.

S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, Jun. 2022, doi: 10.29408/edumatic.v6i1.5433.

T. A. Sari, E. Sinduningrum, and F. Noor Hasan, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes,” Media Online), vol. 3, no. 6, pp. 773–779, 2023, doi: 10.30865/klik.v3i6.884.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

O. Peretz, M. Koren, and O. Koren, “Naive Bayes classifier – An ensemble procedure for recall and precision enrichment,” Eng. Appl. Artif. Intell., vol. 136, no. PB, p. 108972, 2024, doi: 10.1016/j.engappai.2024.108972.

P. Hou, L. Zhou, and Y. Yang, “Density clustering method based on k-nearest neighbor propagation,” J. Phys. Conf. Ser., vol. 2858, no. 1, 2024, doi: 10.1088/1742-6596/2858/1/012041.

A. Asro’i and H. Februariyanti, “Analisis Sentimen Pengguna Twitter Terhadap Perpanjangan Ppkm Menggunakan Metode K-Nearest Neighbor,” J. Khatulistiwa Inform., vol. 10, no. 1, pp. 17–24, 2022, doi: 10.31294/jki.v10i1.12624.

M. K. Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.

Y. Yuliska and K. U. Syaliman, “Peningkatan Akurasi K-Nearest Neighbor Pada Data Index Standar Pencemaran Udara Kota Pekanbaru,” IT J. Res. Dev., vol. 5, no. 1, pp. 11–18, Jul. 2020, doi: 10.25299/itjrd.2020.vol5(1).4680.

N. Nurfaizah and S. R. Hidayat, “Sentimen Analisis Pengguna Produk Ponsel Menggunakan Algoritma Naïve Bayes,” J. Inf. Syst. Manag., vol. 6, no. 1, pp. 10–14, 2024, doi: 10.24076/joism.2024v6i1.1625.

R. Merdiansah and A. Ali Ridha, “Sentiment Analysis of Indonesian X Users Regarding Electric Vehicles Using IndoBERT,” J. Ilmu Komput. dan Sist. Inf. (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.

I. S. H. Almaqbali, F. M. A. Al Khufairi, M. S. Khan, A. Z. Bhat, and I. Ahmed, “Web Scrapping: Data Extraction from Websites,” J. Student Res., pp. 1–4, 2020, doi: 10.47611/jsr.vi.942.

N. Y. Pradipta and H. Soetanto, “Sentiment Classification of General Election 2024 News Titles on Detik. com Online Media Website Using Multinominal Naive Bayes Method,” J. Appl. Sci. Eng. …, vol. 6, no. 1, 2024, [Online]. Available: https://ascijournal.eu/index.php/asci/article/view/2754%0Ahttps://ascijournal.eu/index.php/asci/article/download/2754/1833

N. Cahyono and Anggista Oktavia Praneswara, “Analisis Sentimen Ulasan Aplikasi TikTok Shop Seller Center di Google Playstore Menggunakan Algoritma Naive Bayes,” Indones. J. Comput. Sci., vol. 12, no. 6, pp. 3925–3940, 2023, doi: 10.33022/ijcs.v12i6.3473.

R. Kosasih and A. Alberto, “Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 6, no. 1, pp. 134–139, 2021, [Online]. Available: https://doi.org/10.30743/infotekjar.v6i1.3893

W. G. S. Parwita, “A document recommendation system of stemming and stopword removal impact: A web-based application,” J. Phys. Conf. Ser., vol. 1469, no. 1, 2020, doi: 10.1088/1742-6596/1469/1/012050.

A. Özçift, K. Akarsu, F. Yumuk, and C. Söylemez, “Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from transformers (BERT): an empirical case study for Turkish,” Automatika, vol. 62, no. 2, pp. 226–238, 2021, doi: 10.1080/00051144.2021.1922150.

O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest,” J. Ilm. Inform., vol. 11, no. 02, pp. 159–169, 2023, doi: 10.33884/jif.v11i02.7987.

A. H. Dani, E. Y. Puspaningrum, and R. Mumpuni, “Studi Performa TF-IDF dan Word2Vec Pada Analisis Sentimen Cyberbullying,” Router J. Tek. Inform. dan Terap., vol. 2, no. 2, pp. 94–106, 2024, [Online]. Available: https://doi.org/10.62951/router.v2i2.76

J. Ipmawati, S. Saifulloh, and K. Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 247–256, 2024, doi: 10.57152/malcom.v4i1.1066.

F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020, doi: 10.33096/ijodas.v1i2.12.

Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.

S. A. Utiarahman and A. M. M. Pratama, “Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, pp. 3137–3146, 2024, doi: 10.30865/klik.v4i6.1871.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

M. Yusuf, “Analisis Sentimen Data Twitter Terhadap Bakal Calon Presiden Republik Indonesia 2024 Dengan Metode Backpropagation,” 2022, [Online]. Available: http://repo.palcomtech.ac.id/id/eprint/1662/

F. Aziz, P. Ishak, and S. Abasa, “Klasifikasi Depresi Menggunakan Support Vector Machine: Pendekatan Berbasis Data Text Mining,” J. Pharm. Appl. Comput. Sci., vol. 2, no. 2, pp. 33–38, 2024, doi: 10.59823/jopacs.v2i2.53.

S. A. Pratiwi, A. Fauzi, S. Arum, P. Lestari, and Y. Cahyana, “KLIK: Kajian Ilmiah Informatika dan Komputer Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree,” Media Online, vol. 4, no. 4, pp. 2381–2388, 2024, doi: 10.30865/klik.v4i4.1681.

D. P. Wijaya, L. D. Murti, M. R. Rachman, D. Arsip, and K. Bandung, “Recall dan Precision pada Online Public Access Catalog (OPAC) Dinas Arsip dan Perpustakaan Kota Bandung Didik,” vol. 24, no. 1, 2022.

M. Pirnau et al., “Content Analysis Using Specific Natural Language Processing Methods for Big Data,” Electron., vol. 13, no. 3, pp. 1–22, 2024, doi: 10.3390/electronics13030584.

M. Iqbal, A. Davy Wiranata, R. Suwito, and R. Faiz Ananda, “Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter,” Media Online, vol. 4, no. 3, pp. 1799–1807, 2023, doi: 10.30865/klik.v4i3.1402.

Posted

2025-01-09