Preprint has been published in a journal as an article
Preprint / Version 1

The Implementation of the Naive Bayes Method for Sentiment Analysis in the 2024 Presidential Election


Implementasi Metode Naïve Bayes untuk Analisis Sentimen pada Pemilihan Presiden 2024

##article.authors##

DOI:

https://doi.org/10.21070/ups.652

Keywords:

Naive Bayes;, Sentiment Analysis;, twitter;

Abstract

Twitter is social media platform that allows users to share photos and videos. The 2024 presidential election will held next year, the topic of presidential election has been widely found and has become discussion on the twitter. The purpose of this study is to determine public sentiment towards the 2024 presidential election in Indonesia and the performance of the Naïve Bayes Classifier Algorithm. This research belongs to the category of finely differentiated sentiment analysis. The data used obtained through the twitter scraping process will be classified into 3 classes,  positive, negative, and neutral with manual labeling. Using TF-IDF feature extraction method and performance calculation using confusion matrix. This study show 2024 presidential election in Indonesia positive sentiment greater than negative and neutral. Through several test schemes. The best results were obtained by sharing 70% test data and 30% training data Classification using Naïve Bayes algorithm obtained an accuracy of 83%.

Downloads

Download data is not yet available.

References

P. Pasek, O. Mahawardana, G. A. Sasmita, P. Agus, and E. Pratama, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,” 2022.

K. Energi, D. Sumber, and D. Mineral, “PERAN TAGAR #ENERGIBERKEADILAN PADA MEDIA SOSIAL KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL HASHTAG BENEFITS #ENERGIBERKEADILAN ON SOCIAL MEDIA OF THE MINISTRY OF ENERGY AND MINERAL RESOURCES Thoriq Ramadani,” 2019.

P. Pramelani and T. Widyastuti, “Persepsi Milenial terhadap Gaya Kepemimpinan Calon Presiden Tahun 2024,” Nakhoda: Jurnal Ilmu Pemerintahan, vol. 20, no. 2, pp. 1–13, Dec. 2021, doi: 10.35967/njip.v20i2.196.

P. Pasek Okta Mahawardana, I. Ayu Putu Febri Imawati, and I. Wayan Dika, “ANALISIS SENTIMEN BERDASARKAN OPINI DARI MEDIA SOSIAL TWITTER TERHADAP ‘FIGURE PEMIMPIN’ MENGGUNAKAN PYTHON.” [Online]. Available: https://ojs.mahadewa.ac.id/index.php/jmti

R. Syafaat Amardita and M. Dwifebri Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” Jurnal Riset Komputer), vol. 9, no. 1, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i1.3793.

R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” vol. 3, no. 1.

A. A. Permana et al., “SENTIMEN ANALISIS OPINI MASYARAKAT PADA MEDIA SOSIAL TWITTER TERHADAP VAKSIN BERBAYAR MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER (NBC) SENTIMENT ANALYSIS OF PUBLIC OPINION ON SOCIAL MEDIA TWITTER ON PAID VACCINE USING NAÏVE BAYES CLASSIFIER (NBC) METHOD,” vol. 10, no. 2, pp. 84–92, 2021, [Online]. Available: http://jurnal.umt.ac.id/index.php/jt/index

D. W. Seno and A. Wibowo, “Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine,” Jurnal Ilmiah FIFO, vol. 11, no. 2, p. 144, Nov. 2019, doi: 10.22441/fifo.2019.v11i2.004.

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 552, Jul. 2020, doi: 10.30865/mib.v4i3.2140.

O. Y. Findawati, M. M. Muhammad, A. Rosid, S. Kom, and M. Kom, BUKU AJAR TEXT MINING Diterbitkan oleh UMSIDA PRESS.

F. Handayani, D. Feddy, and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110.”

T. E. Hidayat and A. Rosid, “Analysis of Community Sentiments Regarding Plans to Relocate National Capital Using the Naïve Bayes Method Analisa Sentimen Masyarakat Tentang Rencana Pemindahan Ibukota Negara Dengan Metode Naïve Bayes,” 2020.

A. Deolika and E. Taufiq Luthfi, “ANALISIS PEMBOBOTAN KATA PADA KLASIFIKASI TEXT MINING,” Jurnal Teknologi Informasi, vol. 3, no. 2, 2019.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” vol. 15, no. 1.

N. Faridhotul Hidayah, K. R. Paranita Kartika, and S. Nur Budiman, “PENERAPAN METODE NAIVE BAYES DALAM ANALISIS SENTIMEN APLIKASI SENTUH TANAHKU PADA GOOGLE PLAY,” 2022.

Posted

2023-04-06