Hybrid Machine Learning for Sentiment Analysis of Dana Application Reviews
Hybrid Machine Learning untuk Analisa Sentimen Ulasan Aplikasi Dana
DOI:
https://doi.org/10.21070/ups.6280Keywords:
Dana App, Hybrid Machine Learning, Sentiment AnalysisAbstract
This research evaluates user sentiment towards the Dana application on the Google Play Store, where in early 2024 1,000 reviews were collected. Of these reviews, 72% (720 reviews) were negative, while 28% (280 reviews) were positive. This situation arose because the Dana application was under maintenance during the dataset collection period. This research utilizes Support Vector Machine (SVM), Naive Bayes, and Hybrid methods for sentiment classification. The evaluation results show an accuracy of 92.62% for SVM, 88.62% for Naive Bayes, and 93.88% for Hybrid, where the Hybrid method shows the best performance in predicting user sentiment. This research makes an important contribution to the development of sentiment classification algorithms and provides insight for application developers to understand user perceptions during the repair period. It is hoped that the research results can help improve the quality of the Dana application and similar applications in the future.
Downloads
References
S. A. Helmayanti, F. Hamami, and R. Y. Fa’rifah, “Penerapan Algoritma Tf-Idf Dan Naïve Bayes Untuk Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Flip Pada Google Play Store,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 3, pp. 1822–1834, 2023, doi: 10.35870/jimik.v4i3.415.
A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 829–835, 2023, doi: 10.23960/jitet.v11i3s1.3348.
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.
F. J. Sinaga, E. Pratama, F. Prasetya, and H. Irsyad, “Klasifikasi Opini Pengguna Aplikasi Bibit Pada Google Play Store Menggunakan Algoritma Naive Bayes,” MDP Student Conf., vol. 2, no. 1, pp. 10–16, 2023, doi: 10.35957/mdp-sc.v2i1.4205.
K. Solecha and O. Irnawati, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Berbasis Particle Swarm Optimization Pada Analisis Sentimen Ulasan Aplikasi Flip,” JIEET (Journal Inf. Eng. Educ. Technol., vol. 07, no. 1, pp. 10–15, 2023.
A. Mahani and H. Margono, “Prediksi Sentimen Investor Pasar Modal Di Jejaring Sosial Menggunakan Text Mining,” Balanc. Econ. Business, Manag. Account. J., vol. 18, no. 2, p. 32, 2021, doi: 10.30651/blc.v18i2.7226.
R. Syahputra, G. J. Yanris, and D. Irmayani, “SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter,” Sinkron, vol. 7, no. 2, pp. 671–678, 2022, doi: 10.33395/sinkron.v7i2.11430.
N. W. Utami and I. G. J. Eka Putra, “Text Minig Clustering Untuk Pengelompokan Topik Dokumen Penelitian Menggunakan Algoritma K-Means Dengan Cosine Similarity,” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 255–259, 2022, doi: 10.51401/jinteks.v4i3.1907.
R. Yunita and M. Kamayani, “Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Penghapusan Kewajiban Skripsi,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2879–2890, 2023, doi: 10.33022/ijcs.v12i5.3415.
N. Nofiyani and W. Wulandari, “Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1621, 2022, doi: 10.30865/mib.v6i3.4332.
F. Setya Ananto and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” J. ICT Inf. Commun. Technol., vol. 23, no. 1, pp. 75–80, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi
E. Yuniar, D. S. Utsalinah, and D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, pp. 35–42, 2022, doi: 10.25008/janitra.v2i1.145.
D. Nugraha and D. Gustian, “Analisis Sentimen Penggunaan Aplikasi Transportasi Online Pada Ulasan Google Play Store dengan Metode Naive Bayes Classifier,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 326–335, 2024.
D. A. Vonega, A. Fadila, and D. E. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 129–135, 2022, doi: 10.30871/jaic.v6i2.4300.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
A. Sri Widagdo et al., “Analisis Sentimen Mobil Listrik di Indonesia Menggunakan Long-Short Term Memory (LSTM),” J. Fasilkom, vol. 13, no. 3, pp. 416–423, 2023.
M. N. Hidayat and R. Pramudita, “Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 8, no. 2, p. 161, 2024, doi: 10.51211/imbi.v8i2.2719.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.