Preprint has been published in a journal as an article
Preprint / Version 1

Implementation Of Convolutional Neural Network (CNN) To Detect Hate Speech And Emotions On Twitter


Implementasi Convolutional Neural Network (CNN) Untuk Mendeteksi Ujaran Kebencian Dan Emosi Di Twitter

##article.authors##

DOI:

https://doi.org/10.21070/ups.6278

Keywords:

convolutional Neural Network, Classification, Hate Speech

Abstract

The research has successfully developed a highly accurate hate speech detection model on CNN-based Twitter. The model focuses on hate speech loaded with negative sentiment related to sensitive issues such as race, religion, and sexual orientation in Indonesian. The research process includes data collection, text pre-processing, and the use of Word2Vec for word representation. Specially designed CNN models are then trained on the datasets. The results show excellent accuracy, which is 87% for emotional assessment and 99% for detection of hate speech. The advantage of this model lies in its ability to capture subtle patterns in language that indicate hate speech. Despite this, the research still has some limitations, such as the limited size of the datasets. Further research is needed to overcome these constraints and improve the performance of the model.

Downloads

Download data is not yet available.

References

K. Gamage, V. Welgama, dan R. Weerasinghe, “Improving Sinhala Hate Speech Detection Using Deep Learning,” dalam 2022 22nd International Conference on Advances in ICT for Emerging Regions (ICTer), Nov 2022, hlm. 045–050. doi: 10.1109/ICTer58063.2022.10024103.

R. Hayami, S. Mohnica, dan Soni, “Klasifikasi multilabel komentar toxic pada sosial media twitter menggunakan convolutional neural network(CNN),” J. CoSciTech Comput. Sci. Inf. Technol., vol. 4, no. 1, Art. no. 1, Apr 2023, doi: 10.37859/coscitech.v4i1.4365.

A. G. D’Sa, I. Illina, dan D. Fohr, “BERT and fastText Embeddings for Automatic Detection of Toxic Speech,” dalam 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA), Feb 2020, hlm. 1–5. doi: 10.1109/OCTA49274.2020.9151853.

A. B. Syahputri dan Y. Sibaroni, “Comparative Analysis of CNN and LSTM Performance for Hate Speech Detection on Twitter,” dalam 2023 11th International Conference on Information and Communication Technology (ICoICT), Agu 2023, hlm. 190–195. doi: 10.1109/ICoICT58202.2023.10262656.

Syafruddin, A. Thaba, dan R. Ananda, “UJARAN KEBENCIAN NETIZEN INDONESIA PADA AKUN TWITTER ES TEH: TINJAUAN LINGUISTIK FORENSIK,” Semantik, vol. 13, no. 1, hlm. 15–28, Feb 2024, doi: 10.22460/semantik.v13i1.p15-28.

S. Riyadi, A. D. Andriyani, A. M. Masyhur, C. Damarjati, dan M. I. Solihin, “Detection of Indonesian Hate Speech on Twitter Using Hybrid CNN-RNN,” dalam 2023 International Conference on Information Technology and Computing (ICITCOM), Des 2023, hlm. 352–356. doi: 10.1109/ICITCOM60176.2023.10442041.

O. H. Rahman, G. Abdillah, dan A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 1, Art. no. 1, Feb 2021, doi: 10.29207/resti.v5i1.2700.

D. S. Ashari, B. Irawan, dan C. Setianingsih, “Sentiment Analysis on Online Transportation Services Using Convolutional Neural Network Method,” dalam 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Okt 2021, hlm. 335–340. doi: 10.23919/EECSI53397.2021.9624261.

A. P. J. Dwitama dan S. Hidayat, “Identifikasi Ujaran Kebencian Multilabel Pada Teks Twitter Berbahasa Indonesia Menggunakan Convolution Neural Network,” J. Sist. Komput. Dan Inform. JSON, vol. 3, no. 2, Art. no. 2, Des 2021, doi: 10.30865/json.v3i2.3610.

F. D. Ananda dan Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,” MATRIK J. Manaj. Tek. Inform. Dan Rekayasa Komput., vol. 20, no. 2, Art. no. 2, Mei 2021, doi: 10.30812/matrik.v20i2.1130.

D. C. Rahmadani, S. Khomsah, dan M. Y. Fathoni, “Analisis Emosi Wisatawan Menggunakan Metode Lexicon Text Analysis,” J. Tek. Inform. Dan Sist. Inf., vol. 10, no. 1, Art. no. 1, Mei 2024, doi: 10.28932/jutisi.v10i1.6690.

D. V. Bhargav dan D. R, “Performance Analysis of Logistic Regression Algorithm and Random Forest Algorithm for Predicting Product Review Analysis,” dalam 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Apr 2024, hlm. 1–5. doi: 10.1109/ICONSTEM60960.2024.10568774.

A. A. Handoko, M. A. Rosid, dan U. Indahyanti, “Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima,” SMATIKA J. STIKI Inform. J., vol. 14, no. 01, Art. no. 01, Jul 2024, doi: 10.32664/smatika.v14i01.1196.

T. He, Y. Liu, Y. Yu, Q. Zhao, dan Z. Hu, “Application of deep convolutional neural network on feature extraction and detection of wood defects,” Measurement, vol. 152, hlm. 107357, Feb 2020, doi: 10.1016/j.measurement.2019.107357.

L. Xiaolin, R. C. Panicker, B. Cardiff, dan D. John, “Multistage Pruning of CNN Based ECG Classifiers for Edge Devices,” dalam 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov 2021, hlm. 1965–1968. doi: 10.1109/EMBC46164.2021.9630588.

M. Harahap, E. M. Laia, L. S. Sitanggang, M. Sinaga, D. F. Sihombing, dan A. M. Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 6, no. 1, Art. no. 1, Feb 2022, doi: 10.29207/resti.v6i1.3373.

S. Hong, J. Kim, H.-G. Woo, Y.-C. Kim, dan C. Lee, “Screening ideas in the early stages of technology development: A word2vec and convolutional neural network approach,” Technovation, vol. 112, hlm. 102407, Apr 2022, doi: 10.1016/j.technovation.2021.102407.

M. Lestandy dan Abdurrahim, “Effect of Word2Vec Weighting with CNN-BiLSTM Model on Emotion Classification,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 12, no. 1, Art. no. 1, Mar 2023, doi: 10.23887/janapati.v12i1.58571.

D. Maheshwari, S. K. Ghosh, R. K. Tripathy, M. Sharma, dan U. R. Acharya, “Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals,” Comput. Biol. Med., vol. 134, hlm. 104428, Jul 2021, doi: 10.1016/j.compbiomed.2021.104428.

V. A. Porter, B. A. Hobson, B. Foster, P. J. Lein, dan A. J. Chaudhari, “Fully automated whole brain segmentation from rat MRI scans with a convolutional neural network,” J. Neurosci. Methods, vol. 405, hlm. 110078, Mei 2024, doi: 10.1016/j.jneumeth.2024.110078.

Posted

2024-08-16