Classification of Ceramic Roof Tiles Using the CNN Method
Klasifikasi Genteng Keramik Menggunakan Metode CNN
DOI:
https://doi.org/10.21070/ups.5804Keywords:
Clasification, Deep Learning, ceramic roof tile, image processingAbstract
The research on tile classification using Convolutional Neural Network (CNN) aims to improve and address issues in the sorting process within the tile manufacturing industry. The accuracy level in manual sorting processes is very low due to errors caused by visual limitations and physical fatigue. By leveraging the capabilities of Convolutional Neural Network (CNN), a model was developed to classify tiles. This research involved several processes, including literature review, dataset collection, dataset splitting, preprocessing, Convolutional Neural Network (CNN) design, training, testing, and result evaluation. The study used 69 tile images divided into three classes: KW 1, KW 2, and KW 3. The results of testing the Convolutional Neural Network (CNN) on tile classification using 100 epochs with a data split of 90% training and 10% validation yielded an accuracy rate of 100%.
Downloads
References
A. Khairunisa and Aviasti, “Usulan Perbaikan Proses Pembuatan Genteng dengan Menggunakan Metode Taguchi pada Home Industri Mahkota,” Bandung Conf. Ser. Ind. Eng. Sci., vol. 3, no. 1, Jan. 2023, doi: 10.29313/bcsies.v3i1.6614.
D. Prasetyo and A. Nugroho, “ISSN 2338-5677 Cetak ISSN 2548-6646 Online Sistem Pendukung Keputusan Pemilihan Genteng Menggunakan Metode Analytical Hierarchy Process ISSN 2338-5677 Cetak ISSN 2548-6646 Online,” vol. 11, no. 1, pp. 24–30, 2023.
M. Irfa, F. I. Adhim, and F. Istiqomah, “Implementasi Metode Pid untuk Mengontrol Posisi Motor Servo pada Sistem Sortir Berat Adonan,” vol. 10, no. 2, 2021.
F. N. Cahya, N. Hardi, D. Riana, and S. Hadianti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN ),”
vol. 10, pp. 618–626, 2021.
Y. Pratama, E. Rasywir, D. Kisbianty, and B. Irawan, “Eksperimen Layer Pooling menggunakan Standar Deviasi untuk Klasifikasi
Dataset Citra Wajah dengan Metode CNN,” vol. 5, no. 1, pp. 200–210, 2023, doi: 10.47065/bits.v5i1.3604.
F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” vol. 01, pp. 104–108, 2019.
A. Salsabila, R. Yunita, and C. Rozikin, “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia J., vol. 6, no. 1, pp. 124–137, 2021, doi: 10.33050/tmj.v6i1.1667.
A. B. Prakosa, F. T. Informasi, U. Kristen, and S. Wacana, “IMPLEMENTASI MODEL DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA CITRA PENYAKIT DAUN JAGUNG,” no. April, pp. 107–116, 2023.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,”
vol. 4, no. 1, pp. 45–51, 2020.
M. Resa, A. Yudianto, and H. Al Fatta, “WAYANG DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK,” no. 2, pp. 182–190, 2020.
I. S. Ardiansyah, “Implementasi Convolutional Neural Network Untuk Klasifikasi Jenis Beras Berdasarkan Citra Digital,” vol. 12, no.
, pp. 4172–4182, 2023.
C. Rahmad, E. Rohadi, and E. A. Widyatama, “APLIKASI PENENTUAN TINGKAT KUALITAS TELUR AYAM BERDASARKAN WARNA DAN TEKSTUR CITRA KERABANG DENGAN METODE HUE, SATURATION, VALUE,” pp. 9–14, 2020.
Z. F. Abror, “KLASIFIKASI CITRA KEBAKARAN DAN NON KEBAKARAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,” vol. 24, no. 100, pp. 102–113, 2019.
D. H. Firdaus, ImranBahtiar, L. D. Bakti, and E. Suryadi, “KLASIFIKASI PENYAKIT KATARAK PADA MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK ( CNN ) BERBASIS WEB WEB-BASED CLASSIFICATION OF CATARACT IN THE EYES USING CONVOLUTIONAL NEURAL NETWORK ( CNN ) METHOD,” vol. 1, no. 3, 2022.
M. F. Naufal et al., “Klasifikasi Citra Game Batu Kertas Gunting Menggunakan Convolutional Neural Network,” vol. 20, no. 1, pp.
–174, 2021.
A. S. Riyadi, I. Puspa, and S. Widayati, “KLASIFIKASI CITRA ANJING DAN KUCING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK ( CNN ),” vol. 5, pp. 2–6, 2021.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.