Preprint has been published in a journal as an article
Preprint / Version 1

Design of Hoax Filtering Plugin in Twiter Application Using SVM Method


Rancang Bangun Plugin Filtering Hoax di Aplikasi Twiter Menggunakan Metode SVM

##article.authors##

DOI:

https://doi.org/10.21070/ups.5719

Keywords:

SVM, TF-IDF, Twitter

Abstract

People use a variety of social media platforms to communicate with one another and voice their opinions. There are instances of insults that constitute hate speech when there is room for opinion and freedom of speech. Individuals of note, whose developments, conduct, and proclamations have advantages and disadvantages, are the objectives of this can't stand discourse. In this study, public sentiment tweets about public figures are categorized using the support vector machine (SVM) classification technique. A dataset of 700 tweets is utilized to do this, and the reason for this technique is to figure out how well SVM functions with TF-IDF weighting.

Downloads

Download data is not yet available.

References

I. Riadi, R. Umar, and F. D. Aini, “Analisis Perbandingan Detection Traffic Anomaly Dengan Metode Naive Bayes Dan Support Vector Machine (Svm),” Ilk. J. Ilm., vol. 11, no. 1, pp. 17–24, 2019, doi: 10.33096/ilkom.v11i1.361.17-24.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.

I. Aida Sapitri and M. Fikry, “Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store Menggunakan Support Vector Machine,” J. TEKINKOM, vol. 6, no. 1, pp. 1–7, 2023, doi: 10.37600/tekinkom.v6i1.773.

A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma Svm Dan Nbc,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021, doi: 10.31294/reputasi.v2i2.785.

D. Alita, Y. Fernando, and H. Sulistiani, “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter,” J. Tekno Kompak, vol. 14, no. 2, p. 86, 2020, doi: 10.33365/jtk.v14i2.792.

S. D. Asri, D. Ramayanti, A. D. Putra, and Y. T. Utami, “Deteksi Roda Kendaraan Dengan Circle Hough Transform (Cht) Dan Support Vector Machine (Svm),” J. Teknoinfo, vol. 16, no. 2, p. 427, 2022, doi: 10.33365/jti.v16i2.1952.

C. F. Hasri and D. Alita, “Penerapan Metode NaãVe Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, doi: 10.33365/jatika.v3i2.2026.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445.

A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

R. A. Rizal, I. S. Girsang, and S. A. Prasetiyo, “Klasifikasi Wajah Menggunakan Support Vector Machine (SVM),” REMIK (Riset dan E-Jurnal Manaj. Inform. Komputer), vol. 3, no. 2, p. 1, 2019, doi: 10.33395/remik.v3i2.10080.

N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.

M. M. Maarif and N. Setiyawati, “Analisis Sentimen Review Aplikasi LinkedIn di Google Play Store Menggunakan Support Vector Machine,” Progresif J. Ilm. Komput., vol. 20, no. 1, p. 454, 2024, doi: 10.35889/progresif.v20i1.1614.

T. R. Biantong, M. T. Furqon, and A. A. Soebroto, “Implementasi Metode Support Vector Machine Untuk Implementasi Metode Support Vector Machine Untuk,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. June, pp. 185–192, 2019.

Posted

2024-08-07