Analysis of Hate Speech and Emotion Classification on Twitter Platform Using Long-Short Term Memory (LSTM) Method
Analisis Klasifikasi Hate Speech dan Emosi Pada Platfrom Twitter Menggunakan Metode Long-Short Term Memory (LSTM)
DOI:
https://doi.org/10.21070/ups.5287Keywords:
Hate Speech, LSTM, TwitterAbstract
This research aims to develop a classification model to detect hate speech and emotions on the Twitter platform used the LSTM method. With the increasing volume of data on social media, especially Twitter, automatic identification of negative content is crucial for maintaining a healthy digital ecosystem. The dataset used in this study consists of tweets labeled for hate speech and various emotion categories. The preprocessing process is carried out to clean and prepare the data. After preprocessing, the dataset is split into training and testing data with a ratio of 60:40 to ensure accurate model evaluation. The experimental results show that the LSTM model achieves an accuracy of 89% in hate speech classification and 71% in emotion classification. These results demonstrate the potential of the LSTM method in text analysis tasks and can serve as a basis for developing automatic detection systems on social media.
Downloads
References
I. Liu and Y. A. Sari, “Klasifikasi Hate Speech Berbahasa Indonesia di Twitter Menggunakan Naive Bayes dan Seleksi Fitur Information Gain dengan Normalisasi Kata,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4914–4922, 2019.
B. A. H. Kholifatullah and A. Prihanto, “Penerapan Metode Long Short Term Memory Untuk Klasifikasi Pada Hate Speech,” J. Informatics Comput. Sci., vol. 04, pp. 292–297, 2023, doi: 10.26740/jinacs.v4n03.p292-297.
M. Murni, I. Riadi, and A. Fadlil, “Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier (NBC),” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 566, 2023, doi: 10.30865/jurikom.v10i2.5984.
E. Mardia, D. Aisha, and C. P. Dimala, “Kematangan Emosi dengan Perilaku Ujaran Kebencian Pada Remaja Akhir,” vol. 11, no. 2, pp. 254–260, 2023.
J. Hartono, “Aplikasi dan Analisis Literatur Fasilkom UI,” pp. 4–25, 2017, [Online]. Available: https://123dok.com/document/yer4810q-bab-landasan-teori.html
N. R. Radliya, “Data mining,” no. 321, p. 2005, 2015.
E. Prasetyo, Data Mining: Konsep dan Aplikasi menggunakan MATLAB. Yogyakarta: ANDI, 2012.
A. A. W. Kadir, “PERBANDINGAN KINERJA KLASIFIKASI CNN BERDASARKAN STRATEGI SPLIT DATA PADA BERAGAM DATASET CITRA,” 2021.
M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin,” e-Proceeding Eng. Vol.5 No.2, vol. 5, no. 2, pp. 3548–3555, 2018.
R. Y. Rafael and F. Adikara, “Pengimplmentasian Algoritma Long Short-Term Memory Untuk Mendeteksi Ujaran Kebencian Pada Aplikasi Twitter,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 2, pp. 551–560, 2023, doi: 10.29100/jipi.v8i2.3490.
H. Henderi and R. L. Wanda, “Preprocessing Data Untuk Sistem Peramalan Tingkat Kedisiplinan Mahasiswa,” ICIT J., vol. 3, no. 2, pp. 296–308, 2017, doi: 10.33050/icit.v3i2.70.
N. P. S. Wati and C. Pramartha, “Penerapan Long Short Term Memory dalam Mengklasifikasi Jenis Ujaran Kebencian pada Tweet Bahasa Indonesia,” J. Nas. Teknol. Inf. dan Apl., vol. 1, no. 1, pp. 755–762, 2022.
I. S. Y. Saputri, M. Fadli, and I. Surya, “Implementasi E-Commerce Menggunakan Metode UCD (User Centered Design) Berbasis Web,” J. Aksara Komput. Terap., vol. 6, no. 2, pp. 269–278, 2017, [Online]. Available: https://jurnal.pcr.ac.id/index.php/jakt/article/view/1378
Y. A. Pradana, I. Cholissodin, and ..., “Analisis Sentimen Pemindahan Ibu Kota Indonesia pada Media Sosial Twitter menggunakan Metode LSTM dan Word2Vec,” … Teknol. Inf. dan …, vol. 7, no. 5, pp. 2389–2397, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12731%0Ahttps://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/12731/5789
C. H. Pratama and Y. Findawati, “Hate Speech and Emotions Classification in Indonesian Language Texts on Twitter Using Naïve Bayes Classifier [ Klasifikasi Hate Speech dan Emosi Dalam Teks Berbahasa Indonesia Pada Pengguna Twitter Menggunakan Metode Naïve Bayes Classifier ],” pp. 1–6.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.