Preprint has been published in a journal as an article
Preprint / Version 1

Analysis of the Influence of Emotions on Hate Speech on Twitter: A Study Using SVM and Correlation Methods


Analisis Pengaruh Emosi terhadap Hate Speech di Twitter: Studi dengan Metode SVM dan Korelasi

##article.authors##

DOI:

https://doi.org/10.21070/ups.5226

Keywords:

Classification, Correlation analysis, Hate Speech, Emotions, Support Vector Machine, Twitter

Abstract

In the digital era, social media platforms like Twitter play a crucial role in Indonesian society but also facilitate the spread of hate speech. This study examines the influence of emotions (Anticipation, Trust, Joy, Anger, Disgust, Fear, Sadness, and Surprise) on hate speech propagation on Twitter using Support Vector Machine (SVM) and correlation analysis. The dataset was split 80% for training and 20% for testing, involving manual labeling, text preprocessing, TF-IDF word weighting, and SVM classification. Test results showed an accuracy of 87%, precision of 83%, recall of 26%, and an f1-score of 30%. The web application classifies tweets as hate speech or non-hate speech and identifies emotions in tweets. Correlation analysis revealed a moderate positive correlation between hate speech and Anger (0.34) and Disgust (0.35), and a negative correlation with Anticipation (-0.37). This study provides valuable insights into the emotional dynamics of hate speech on Twitter.

Downloads

Download data is not yet available.

References

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi: 10.14421/jiska.2018.31-01.

I. Journal, “Ijns.org Indonesian Journal on Networking and Security - Volume 11 No 2 – Juni 2022,” vol. 11, no. 2, 2022.

R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. S. T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 334, 2019, doi: 10.22146/jnteti.v8i4.533.

J. Gaussian, “Analisis Sentimen Gojek Pada Media Sosial Twitter dengan Klasifikasi Support Vector Machine (SVM),” vol. 9, pp. 376–390, 2020.

J. K. Antartika, “Analisis Sentimen Pada Ulasan Aplikasi Home Credit dengan Metode SVM dan KNN,” vol. 1, pp. 174–181, 2023.

V. M. Svm, R. W. Pratiwi, S. F. H, D. Intan, and Q. R. A, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support,” vol. 8106, pp. 40–46, 2021.

R. Sistem, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan,” vol. 1, no. 10, pp. 17–23, 2021.

K. I. Gunawan and J. Santoso, “Multilabel Text Classification Menggunakan SVM dan Doc2Vec Classification Pada Dokumen Berita Bahasa Indonesia,” J. Inf. Syst. Hosp. Technol., vol. 3, no. 01, pp. 29–38, 2021, doi: 10.37823/insight.v3i01.126.

Ratih Puspitasari, Y. Findawati, and M. A. Rosid, “Sentiment Analysis of Post-Covid-19 Inflation Based on Twitter Using the K-Nearest Neighbor and Support Vector Machine Classification Methods,” J. Tek. Inform., vol. 4, no. 4, pp. 669–679, 2023, doi: 10.52436/1.jutif.2023.4.4.801.

A. Kurniawan, Indriati, and S. Adinugroho, “Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features,” J. Pengemb. Teknol. Inf. dan Komput., vol. 3, no. 9, pp. 8335–8342, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6153

S. Chohan, A. Nugroho, A. M. B. Aji, and W. Gata, “Analisis Sentimen Pengguna Aplikasi Duolingo Menggunakan Metode Naïve Bayes dan Synthetic Minority Over Sampling Technique,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 139–144, 2020, doi: 10.31294/p.v22i2.8251.

T. Chandra Harita, R. Kridalukmana, and D. Eridani, “Pengembangan Aplikasi Analisis Sentimen Terhadap Brand Berbasis Web Menggunakan Kerangka Kerja Flask Web-Based Sentiment Analysis Application Development Using Flask Framework,” J. Tek. Komput., vol. 1, no. 2, pp. 36–40, 2022, doi: 10.14710/jtk.v1i2.36307.

Posted

2024-07-22