DOI of the published article https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/1057
Analysis of Mass and Electronic Media Advertising Sales Predictions Using the Linear Regression Method
Analisis Prediksi Penjualan Iklan Media Masa dan Elektronik Menggunakan Metode Linear Regression
DOI:
https://doi.org/10.21070/ups.5092Keywords:
Linear RegressionAbstract
the research analysis, advertising sales prediction in mass and electronic media uses the linear regression method. Where the linear regression method is a method to predict data in an AI approach to replace or human behavior to solve a problem automatically. The author will develop an analysis of advertising sales in mass and electronic media using the linear regression method. Based on the objectives of the study that have been described, the most influential is TV media because TV media has 90%, Radio has 35%, Newspapaer has 15% based on other media the most influential TV media in advertising sales. The advantage of using the linear regression method is the method easier to predict so that it can make it easier to calculate profits.
Downloads
References
K. Nugroho, W. Hadi Kurniawati, dan R. M. Herdian Bhakti, “Perancangan Sales Prediction Model Menggunakan Metode Neural Network,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, hal. 153–160, 2022, doi: 10.46772/intech.v4i02.870.
H. A. Abdullah, D. R. D. Putra, dan Y. Azhar, “Analisa Penjualan Video Game Menggunakan Metode Ensemble,” JUST IT J. Sist. …, vol. 12, no. 3, hal. 8–16, 2022, [Daring]. Tersedia pada: https://jurnal.umj.ac.id/index.php/just-it/article/view/6746
M. T. Tombeng dan Z. Ardian, “Prediksi Penjualan Supermarket Menggunakan Pendekatan Deep Learning,” CogITo Smart J., vol. 7, no. 1, hal. 160–169, 2021, doi: 10.31154/cogito.v7i1.306.160-169.
A. I. Yanti dan O. R. Adhiyani, “Analisa Pengaruh Iklan, Cashback Dan User Friendly Terhadap Impulse Buying Konsumen Dompet Elektronik Ovo Di Surakarta,” J. MEBIS (Manajemen dan Bisnis), vol. 5, no. 2, hal. 97–109, 2021, doi: 10.33005/mebis.v5i2.109.
A. M. M. Fattah, A. Voutama, N. Heryana, dan N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, hal. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.
L. Putra Nasyuli, I. Lubis, A. Marwan Elhanafi, corresponding author, dan F. Teknik Dan Komputer, “Penerapan Model Machine Learning Algoritma Gradient Boosting dan Linear Regression Melakukan Prediksi Harga Kendaraan Bekas Application Of Machine Learning Models and Gradient Boosting Algorithms Doing Linear Regression Vehicle Price Prediction Used,” Penerapan Model Mach. Learn. Algoritm. Gradient Boost. dan Linear Regres. Melakukan Prediksi Harga Kendaraan Bek., vol. 2, no. 2, hal. 299–310, 2023, [Daring]. Tersedia pada: https://jurnal.unity-academy.sch.id/index.php/jirsi/index%0Ahttp://creativecommons.org/licenses/by-sa/4.0/
S. Suparmadi dan A. Ramadhani, “Sistem Estimasi Pencapaian Target Profit Menggunakan Model Regresi Berbasis Machine Learning,” J. Sci. Soc. Res., vol. 5, no. 3, hal. 703, 2022, doi: 10.54314/jssr.v5i3.1042.
I. M. Muhamad, S. A. Wardana, A. Wanto, dan ..., “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” J. Informatics …, vol. 1, no. 4, hal. 126–134, 2022, [Daring]. Tersedia pada: https://djournals.com/jieee/article/view/382%0Ahttps://djournals.com/jieee/article/download/382/283
I. Ogi dan A. Alhasni, “Iklan Dan Harga Pengaruhnya Terhadap Penjualan Mobil Toyota Avanza Pada Pt. Hasjrat Abadi Manado,” J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 2, no. 2, hal. 1021–1031, 2014.
A. Wanto, S. Defit, dan A. Perdana Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, hal. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.
A. Muhadi dan A. Octaviano, “Penerapan Data Mining Untuk Prediksi Hasil Keuntungan Lelang Mesin X-Ray Tahun 2020 Dengan Metode K-Nearest Neighbor (Studi Kasus : PT.Ramadika Mandiri),” J. Inform. MULTI, vol. 1, no. 2, hal. 2985–8860, 2023, [Daring]. Tersedia pada: https://jurnal.publikasitecno.id/index.php/jim126
N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, dan N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, hal. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.
Mulianto. Jimmi Hendrik P. Sitorus, “Sistem Informasi Absen Karyawan Pt Fif Group Pematang Siantar Berbasis Web Dengan Metode Qr Code,” Bisantara Inform., vol. 4, no. 2, hal. 4, 2020.
F. F. Kiedrowsky dan Andrianingsih, “Sentiment Analysis Marketplaces Digital menggunakan Machine Learning,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 3, hal. 493–499, 2023, doi: 10.35870/jtik.v7i3.1002.
V. Arinal dan M. Azhari, “Penerapan Regresi Linear Untuk Prediksi Harga Beras Di Indonesia,” J. Sains dan Teknol., vol. 5, no. 1, hal. 341–346, 2023.
H. Suroyo, “Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Penerapan Machine Learning dengan Aplikasi Orange Data Mining Untuk Menentukan Jenis Buah Mangga,” Sainteks, hal. 343–347, 2019.
A. Satria, R. Maulida Badri, I. Safitri, dan H. Artikel, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol. | e, vol. 3, no. 2, hal. 389–398, 2023.
C. Siregar, A. S. Sembiring, dan H. K. Siburian, “Perancangan Aplikasi Prediksi Penjualan Laptop Dengan Menerapkan Metode Regresi Linier,” J. Pelita Inform., vol. 17, no. 4, hal. 416–421, 2018, [Daring]. Tersedia pada: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1079/932
T. Indarwati, T. Irawati, dan E. Rimawati, “Penggunaan Metode Linear Regression Untuk Prediksi Penjualan Smartphone,” J. Teknol. Inf. dan Komun., vol. 6, no. 2, hal. 2–7, 2019, doi: 10.30646/tikomsin.v6i2.369.
H. Larochelle, Y. Bengio, J. Louradour, dan P. Lamblin, “Exploring Strategies for Training Deep Neural Networks,” J. Mach. Learn. Res., vol. 1, hal. 1–40, 2009, doi: Doi 10.1109/Tsmcc.2012.2220963.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.