Preprint has been published in a journal as an article
Preprint / Version 1

Isolation And Testing Of The Potensial Of Trichoderma In Marginal Saline Soil As A Biographical Agent Of Biofertilizer


Isolasi Dan Pengujian Potensi Trichoderma Lahan Salin Marginal Sebagai Agen Hayati Biofertilizer

##article.authors##

DOI:

https://doi.org/10.21070/ups.501

Keywords:

Saline Fields, Biological Agents, In Vitro

Abstract

The use of sub-optimal wetlands has good prospects in the future, but low salinity and soil fertility are difficult obstacles to solve. This study aims to obtain Trichoderma fungi from saline soil which has potential as a biofertilizer biological agent. Fungi Trichoderma sp. isolated from marginal saline soil has potential as a biological fertilizer agent as shown by its in vitro performance which is similar to the biological agent Trichoderma asperellum, a collection of the UMSIDA Microbiology and Biotechnology Laboratory.

Downloads

Download data is not yet available.

References

Biologi, B. J., & Purwanto, A. (2022). Minireview: Kepentingan Trichoderma dalam Sistem Pertanian Berkelanjutan. 2(1), 101–106.

Darmayasa, I. B. G. dan Oka, I. G. L. (2016). A Study on Inhibitory Effect of Trichoderma sp. TKD on Aspergillus flavus FNCC6109 and Its Molecular Identification. International Journal of Pure and Applied Bioscience 4(2): 103-110.

Dauda, W. P., Shanmugam, V., & Tyagi, A. (2023). Biocontrol of sheath blight of rice (Oryza sativa L.) through alteration in expression dynamics of candidate effector genes of Rhizoctonia solani AG1-IA during pathogenesis. Letters in applied microbiology, 76(1), ovac008. https://doi.org/10.1093/lambio/ovac008

Dian, K., Sawitri, L., Proborini, M. W., & Wijayanti, F. E. (2023). Potensi Trichoderma asperellum TKD dalam Menghambat Phytophthora spp . pada Benih Kakao Selama Masa Penyimpanan The Potential of Trichoderma asperellum TKD as Inhibitor of Phytophthora spp . on Cocoa Seeds during Storage Period Pendahuluan Metode Penelitian Pemeriksaan Koloni Phytophthora spp . pada. 8(September 2022), 40–50. https://doi.org/10.24002/biota.v8i1.6076

Ding, M. Y., Chen, W., Ma, X. C., Lv, B. W., Jiang, S. Q., Yu, Y. N., Rahimi, M. J., Gao, R. W., Zhao, Z., Cai, F., & Druzhinina, I. S. (2021). Emerging salt marshes as a source of Trichoderma arenarium sp. nov. and other fungal bioeffectors for biosaline agriculture. Journal of applied microbiology, 130(1), 179–195. https://doi.org/10.1111/jam.14751

Jain, A., Singh, S., Kumar Sarma, B., & Bahadur Singh, H. (2012). Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of applied microbiology, 112(3), 537–550. https://doi.org/10.1111/j.1365-2672.2011.05220.x

Jain, A., Singh, A., Singh, S., Sarma, B. K., & Singh, H. B. (2015). Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction. Journal of basic microbiology, 55(5), 601–606. https://doi.org/10.1002/jobm.201400156

Jumadi, O., & Caronge, W. (2021). Trichoderma dan pemanfaatan

Kiruba , J. M., & Saeid, A. (2022). An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. International journal of molecular sciences, 23(21), 13049. https://doi.org/10.3390/ijms232113049

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar, A., Rajput, V. D., Yadav, A. N., Singh, K., Singh, J., Sayyed, R. Z., Arora, N. K., & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental science and pollution research international, 28(20), 24917–24939. https://doi.org/10.1007/s11356-021-13252-7

Kubicek, C. P., Steindorff, A. S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., … Kuo, A. (2019). Evolusi dan genomik komparatif yang paling umum Trichoderma jenis. BMC Genomic, 20(1), 1–24.

Kubicek ., Christian P., et al. 2019. Evolution and comparative genomics of the most common Trichoderma sp.ecies. R esearch Article BMC Genomic.

Mardhatillah, Z. (2018). Keefektifan Trichoderma harzianum dan Trichoderma koningii dalam Pengendalian Penyakit Moler pada Bawang Merah [Skripsi]. Institut Pertanian Bogor.

Mawar, R., Manjunatha, B. L., & Kumar, S. (2021). Commercialization, Diffusion and Adoption of Bioformulations for Sustainable Disease Management in Indian Arid Agriculture: Prospects and Challenges. Circular economy and sustainability, 1(4), 1367–1385. https://doi.org/10.1007/s43615-021-00089-y

Mei, H. M., Ruan, Y. N., Zhang, J. X., Cui, J. X., Yan, K., Dong, X. Y., Bian, L. X., & Sun, Y. H. (2022). [Effects of Trichoderma on nitrogen absorption and use efficiency in Lycium chinense roots under saline stress]. Ying yong sheng tai xue bao = The journal of applied ecology, 33(9), 2539–2546. https://doi.org/10.13287/j.1001-9332.202209.015

Melyanti, N., Ester, F., Kandou, F., Flora, M., & Singkoh, O. (2022). Jurnal Ilmu Alam dan Lingkungan Pada Tanaman Bawang Merah Allium cepa Isolat Lokal Tonsewer Secara In vitro. 13(2), 1–7.

Miftahurrohmat, A. (2018). The morphological response of the soybean growth (Glycine max (l)) until vegetative stage 3 on various intensities of light. IOP Conference Series: Materials Science and Engineering, 420(1), p. 012069.

Miftahurrohmat, A. (2020). Utilization of trichoderma sp. and pseudomonas fluorescens as biofertilizer in shade-resistant soybean. IOP Conference Series: Materials Science and Engineering, 821(1), p. 012002.

Miftakhurrohmat, A. & Sutarman. (2021). The vegetative growth response of detam soybean varieties towards bacillus subtilis and trichoderma sp. applications as bio-fertilizer. E3S Web of Conferences, 232, p. 03024. https://doi.org/10.1051/e3sconf/202123203024

Mpanga, I. K., Nkebiwe, P. M., Kuhlmann, M., Cozzolino, V., Piccolo, A., Geistlinger, J., Berger, N., Ludewig, U., & Neumann, G. (2019). The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize. Microorganisms, 7(2), 38. https://doi.org/10.3390/microorganisms7020038

Nengsih, E. P., Faizah, M., & Prasetyono, H. (2022). Uji Tiga Jenis Media Tumbuh Trichoderma sp. dan Efektifitas Antagonisme Terhadap Fusarium sp. Secara Invitro. Agrosaintifika, 4(2), 294–298. https://doi.org/10.32764/agrosaintifika.v4i2.989

Oszako, T., Voitka, D., Stocki, M., Stocka, N., Nowakowska, J. A., Linkiewicz, A., Hsiang, T., Belbahri, L., Berezovska, D. dan Malewski, T. (2021). Trichoderma asperellum Efficiently Protects Quercus Robur Leaves Against Erysiphe Alphitoides. Journal Plant Pathology 159: 159-295.

Prihatiningrum, A. E. (2020). Test the ability of tricoderma harzianum and bacillus subtilis as control agents of wilted ralstonia solanacearum bacteria in tobacco plants (Nicotiana tobacum). Nabatia, 8(1), 1-7.

Purwanto, A. (2020). Isolasi Fungi Selulolitik Trichoderma pada Beberapa Limbah Organik. JURNAL AGRI-TEK : Jurnal Penelitian Ilmu-Ilmu Eksakta, 21(1), 42–47. https://doi.org/10.33319/agtek.v21i1.70

Sarkar, D., & Rakshit, A. (2022). Amalgamation of Farmers' Bio-priming Knowledge in Integrated Nutrient Management for Sustainable Management of Red Cabbage Soil Under Middle Gangetic Plains, India. Environmental management, 10.1007/s00267-022-01638-3. Advance online publication. https://doi.org/10.1007/s00267-022-01638-3

Schütz, G., Haltrich, D., & Atanasova, L. (2020). Influence of spore morphology on spectrophotometric quantification of Trichoderma inocula. BioTechniques, 68(5), 279–282. https://doi.org/10.2144/btn-2019-0152

Sutarman, S., & Miftahurrohmat, A. (2021). Growth response of soybean varieties to trichoderma application on acid soils. E3S Web of Conferences, 316, p. 03007. https://doi.org/10.1051/e3sconf/202131603007

Wang, T., Cheng, K., Huo, X., Meng, P., Cai, Z., Wang, Z., & Zhou, J. (2022). Bioorganic fertilizer promotes pakchoi growth and shapes the soil microbial structure. Frontiers in plant science, 13, 1040437. https://doi.org/10.3389/fpls.2022.1040437

Wang, Z., Yang, T., Mei, X., Wang, N., Li, X., Yang, Q., Dong, C., Jiang, G., Lin, J., Xu, Y., Shen, Q., Jousset, A., & Banerjee, S. (2022). Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiology spectrum, 10(6), e0357222. https://doi.org/10.1128/spectrum.03572-22

Younas, H., Nazir, A., & Bareen, F. E. (2022). Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. Environmental science and pollution research international, 29(38), 57669–57687. https://doi.org/10.1007/s11356-022-19913-5

Posted

2023-03-09