Preprint has been published in a journal as an article
Preprint / Version 1

Hate Speech and Emotions Classification in Indonesian Language Texts on Twitter Using Naïve Bayes Classifier


Klasifikasi Hate Speech dan Emosi Dalam Teks Berbahasa Indonesia pada Pengguna Twitter Menggunakan Metode Naïve Bayes Classifier

##article.authors##

DOI:

https://doi.org/10.21070/ups.4766

Keywords:

Clasification, Hate Speech, Emotional Description, Naive Bayes, Tweet

Abstract

Hate speech is a form of expression that incites, spreads, justifies, or encourages hatred, discrimination and violence against individuals and groups for various reasons. Hate speech  is usually found on social media connected to the internet, one of which is in this study through social media twitter using the Naïve Bayes Classifier method. The dataset used in this study amounted to 1800 data labeled not hate speech and 2250 data labeled hate speech with a comparison of 60% training data and 40% test data. The results of the evaluation of test data with confusion matrix obtained measurements of matrix mean accuracy for hate speech classification 0.89 and matrix mean accuracy for emotion classification 0.59.  Based on the results obtained, it can be concluded that to classify hate speech and emotions on Twitter using Naïve Bayes, the best results with the Confusion Matrix without selecting the Information Gain feature.

Downloads

Download data is not yet available.

References

I. Liu and Y. A. Sari, “Klasifikasi Hate Speech Berbahasa Indonesia di Twitter Menggunakan Naive Bayes dan Seleksi Fitur Information Gain dengan Normalisasi Kata,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4914–4922, 2019.

S. Al Baqi, “Ekspresi Emosi Marah,” Bul. Psikol., vol. 23, no. 1, p. 22, 2015, doi: 10.22146/bpsi.10574.

B. Martins, G. Sheppes, J. J. Gross, and M. Mather, “Age Differences in Emotion Regulation Choice: Older Adults Use Distraction Less Than Younger Adults in High-Intensity Positive Contexts,” Journals Gerontol. - Ser. B Psychol. Sci. Soc. Sci., vol. 73, no. 4, pp. 603–611, 2018, doi: 10.1093/geronb/gbw028.

H. Ahmad Gozali and M. Alfan Rosid, “Classification of Student Complaints with Naive Bayes and Literary Methods Klasifikasi Keluhan Mahasiswa dengan Metode Naive Bayes dan Sastrawi,” Network, Comput. Sci. |, vol. 3, no. 1, pp. 22–26, 2020.

M. Hakiem, M. A. Fauzi, and Indriati, “Klasifikasi Ujaran Kebencian pada Twitter Menggunakan Metode Naïve Bayes Berbasis N-Gram Dengan Seleksi Fitur Information Gain,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2443–2451, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4682

F. Fanesya, R. C. Wihandika, and Indriati, “Deteksi Emosi pada Twitter Menggunakan Metode Naive Bayes dan Kombinasi Fitur,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, p. 3, 2019.

M. F. A. Afif, Y. Nurhamidah, and M. F. Mashuri, “Kematangan emosi dalam perilaku ujaran kebencian pada kebijakan politik,” Cognicia, vol. 9, no. 1, pp. 25–30, 2021, doi: 10.22219/cognicia.v9i1.14234.

Ahmad Wildan Attabi, Lailil Muflikhah, and Mochammad Ali Fauzi, “Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4548–4554, 2018.

I. G. A. Socrates, A. L. Akbar, M. S. Akbar, A. Z. Arifin, and D. Herumurti, “Optimasi Naive Bayes Dengan Pemilihan Fitur Dan Pembobotan Gain Ratio,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 7, no. 1, p. 22, 2016, doi: 10.24843/lkjiti.2016.v07.i01.p03.

T. E. Hidayat and A. Rosid, “Analysis of Community Sentiments Regarding Plans to Relocate National Capital Using the Naïve Bayes Method Analisa Sentimen Masyarakat Tentang Rencana Pemindahan Ibukota Negara Dengan Metode Naïve Bayes,” Network, Comput. Sci. |, vol. 3, no. 2, pp. 43–49, 2020.

A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” J. Teknol. Inf., vol. 3, no. 2, p. 179, 2019, doi: 10.36294/jurti.v3i2.1077.

A. Kumari, “Study on Naive Bayesian Classifier and its relation to Information Gain,” Int. J. Recent Innov. Trends Comput. Commun., vol. 2, no. 3, pp. 601–602, 2014.

A. P. J. Dwitama, “Deteksi Ujaran Kebencian Pada Twitter Bahasa Indonesia Menggunakan Machine Learning: Reviu Literatur,” J. Sains, Nalar, dan Apl. Teknol. Inf., vol. 1, no. 1, pp. 31–39, 2021, doi: 10.20885/snati.v1i1.5.

T. Ghassani Saskia, “Klasifikasi Hate Speech Dan Abusive LanguagePada Twitter Bahasa Indonesia Dengan MetodeNaive Bayes Classifier,” 2021.

N. M. S. Hadna, P. I. Santosa, and W. W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. March, pp. 57–64, 2016.

Posted

2024-05-30