DOI of the published article https://doi.org/10.51519/journalisi.v6i1.666
Dynamic Segmentation Analysis for Expedition Services: Integrating K-Means and Decision Tree
Analisis Segmentasi Dinamis Untuk Layanan Ekspedisi: Mengintegrasikan K-Means dan Decision Tree
DOI:
https://doi.org/10.21070/ups.4438Keywords:
K-Means Clustering, Decision Tree, Expedition Services, MarketplaceAbstract
Technological developments have an inpact on increasing the level of competition between companies in acquiring and retaining customers. With this competition, companies must maximise efforts to reach consumers and understand customer service needs so that the business can continue to survive and experience development. In this effort, The data processing was done using rapidminer with k-means clustering and decision tree methods. The research results show that k-means clustering achieved the lowest Davies Bouldin Index (DBI) accuracy results, namely -0,943 in cluster_8. In the research using the decision tree methods, accuracy results were obtained at 49.83%, with the good cluster being cluster_7. In this case, better accuracy values can be achieved by using the k-means clustering methods. This research can provide an illustration of the importance of utulizing the k-means and decision tree algorithm in classifying sales data as a tool for optimizing marketing and service efforts.
Downloads
References
L. T. T. Tran, “Managing the effectiveness of e-commerce platforms in a pandemic,” J. Retail. Consum. Serv., vol. 58, no. September 2020, p. 102287, 2021, doi: 10.1016/j.jretconser.2020.102287.
J. Teknologi, E. Febrianty, L. Awalina, and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail Optimizing Marketing Strategies with Customer Segmentation Using K-Means Clustering on Online Retail Transactions,” vol. 13, no. September, pp. 122–137, 2023, doi: 10.34010/jati.v13i2.
I. P. Artaya and T. Purworusmiardi, “Efektifitas Marketplace Dalam Meningkatkan Konsentrasi,” Ekon. Dan Bisnis, Univ. Narotama Surabaya, no. April, pp. 1–10, 2019, doi: 10.13140/RG.2.2.10157.95206.
W. Novita Sari., Achmad Hizazi., “Effect of Good Corporate Governance and Leverage on Profitability-Mediated Tax Avoidance (Study on Mining Companies listed on the Indonesia Stock Exchange 2016 – 2019),” Int. J. Acad. Res. Account. Financ. Manag. Sci., vol. 11, no. 2, pp. 202–221, 2021, doi: 10.6007/IJARAFMS.
P. N. I. Sari, “Pengaruh Brand ambassador,kepercayaan dan resiko terhadap keputusan pembelian di e-commerce Shopee oleh mahasiswa di Pekanbaru,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2020.
Ismai, “E-commerce dorong perekonomian Indonesia, selama pandemi covid 19 sebagai entrepreneur,” J. Manaj. dan Bisnis Prodi Kewirausahaan, vol. 2, no. 2, pp. 111–124, 2020.
B. Algifari and A. Ariesta, “Penerapan E-Commerce Untuk Meningkatkan Penjualan Sepatu Pada Toko Garasi Spokat,” pp. 99–105.
V. No and Z. Kedah, “Startupreneur Bisnis Digital ( SABDA ) Use of E-Commerce in The World of Business,” vol. 2, no. 1, pp. 51–60, 2023.
B. Zhang, L. Wang, and Y. Li, “Precision Marketing Method of E-Commerce Platform Based on Clustering Algorithm,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/5538677.
F. A. Dewa and M. T. Jatipaningrum, “SEGMENTASI E-COMMERCE DENGAN CLUSTER K-MEANS DAN FUZZY C-MEANS ( Studi Kasus : Media Sosial di Indonesia yang diunduh di Play Store ),” vol. 4, no. 1, pp. 53–67, 2019.
I. Shaik, S. S. Nittela, T. Hiwarkar, and S. Nalla, “K-means Clustering Algorithm Based on E-Commerce Big Data,” no. September, 2023, doi: 10.35940/ijitee.K2121.0981119.
E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” vol. 9, no. 1, pp. 95–100, 2021.
Y. Lei and X. Qiu, “Research on the Evaluation of Overseas Strategic Climate Based on Decision Tree and Adaptive Boosting Classification Models,” vol. 12, no. December, pp. 1–10, 2021, doi: 10.3389/fpsyg.2021.803989.
M. R. Nahjan, N. Heryana, A. Voutama, F. I. Komputer, U. S. Karawang, and R. Miner, “IMPLEMENTASI RAPIDMINER DENGAN METODE CLUSTERING K-MEANS UNTUK ANALISA PENJUALAN PADA TOKO OJ CELL,” vol. 7, no. 1, pp. 101–104, 2023.
G. Indrawan, G. R. Dantes, P. Studi, I. Komputer, P. Pascasarjana, and U. P. Ganesha, “DATA MINING REKOMENDASI CALON MAHASISWA TECHNIQUE FOR OTHERS REFERENCE BY SIMILARITY TO IDEAL,” no. 1, pp. 11–21, 2019.
M. Ahmed, R. Seraj, S. Mohammed, and S. Islam, “The k-means Algorithm : A Comprehensive Survey and Performance Evaluation,” pp. 1–12, 2020, doi: 10.3390/electronics9081295.
B. H. Prakoso, E. Rachmawati, D. Rachmatta, and P. Mudiono, “Klasterisasi Puskesmas dengan K-Means Berdasarkan Data Kualitas Kesehatan Keluarga dan Gizi Masyarakat,” vol. 14, no. April, pp. 60–68, 2023.
N. Suwaryo, A. Rahman, D. Marini, U. Atmaja, and A. Basri, “Klasterisasi Stok Produk Retail Untuk Menetukan Pergerakan Kebutuhan Konsumen Dengan Algoritma K-Means,” vol. 4, no. 2, pp. 306–312, 2023.
M. Rizal et al., “ALGORITMA DECISION TREE UNTUK ANALISIS SENTIMEN PUBLIC TERHADAP MARKETPLACE DI,” vol. 05, no. 01, pp. 18–25, 2023.
B. T. Jijo and A. M. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” vol. 02, no. 01, pp. 20–28, 2021, doi: 10.38094/jastt20165.
A. Setyawan and D. N. Fauzi, “IMPLEMENTASI FUNGSI DISPERSION RATIO PADA PROSES SPLITING ATRIBUT ALGORITMA DECISION TREE,” vol. 2, no. 2, pp. 86–91, 2022, doi: 10.5281/zenodo.7782439.
V. M. Member, P. Casari, and S. Member, “A Novel Hyperparameter-free Approach to Decision Tree Construction that Avoids Overfitting by Design arXiv : 1906 . 01246v1 [ cs . LG ] 4 Jun 2019”.
K. Halim, D. E. Herwindiati, T. Sutrisno, T. Informatika, and U. Tarumanagara, “PENERAPAN METODE DECISION TREE UNTUK,” pp. 1–5.
Downloads
Additional Files
Posted
License
Copyright (c) 2024 UMSIDA Preprints Server
This work is licensed under a Creative Commons Attribution 4.0 International License.