Preprint has been submitted for publication in journal
Preprint / Version 1

Sentiment Analysis of Brompit Application Reviews on the Google Play Store Using the Support Vector Machine Algorithm

Analisis Sentimen Ulasan Aplikasi Brompit Di Google Play Store Menggunakan Algoritma Support Vector Machine

##article.authors##

DOI:

https://doi.org/10.21070/ups.427

Keywords:

Brompit, Google Play Store, Sentiment Analysis, Support Vector Machine

Abstract

Sentiment analysis is a technique to classify a document into several sentiments using text analysis methods. This research uses the dataset contained in the brompit application to classify the sentiment of the application reviews. The dataset will be grouped
into two sentiments, namely positive and negative. In this case the researcher uses the Support Vector Machine
algorithm with a dataset consisting of 3359 review data. By using the Support Vector Machine algorithm, the highest
classification result of 87,6% was obtained using the k-fold cross validation method which was obtained from the 8th
fold iteration using a RBF kernel and a ratio of training data and test data of 90:10. This proves that the application
of the Support Vector Machine algorithm in document classification is able to produce high enough accuracy.

Downloads

Download data is not yet available.

References

Priyanto, S. A. (2019). Aplikasi Pemesanan Servis Sepeda Motor Online Berbasis Android (Doctoral dissertation, Universitas Panca Marga Probolinggo).

Mpmhondajatim. (2019). Diakses dari https://www.mpmhondajatim.com/brompit.

Google Play Store. (2021). Diakses dari https://play.google.com/store/apps/details?id=com.mpm.brompit.

Herlinawati, Nuraeni, et al. (2020) "Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine." CESS (Journal of Computer Engineering, System and Science) 5.2: 293-298.

Raymond J Mooney, C. (2006). Machine Learning Text Categorization. Machine Learning Text Categorization, 1–6.

Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. (JurTI) Jurnal Teknologi Informasi, 3(2), 179-184.

Luqyana, W. A. (2018). Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine (Doctoral dissertation, Universitas Brawijaya).

Arifin, N., Enri, U., & Sulistiyowati, N. (2021). Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 6(2), 129-136.

Findawati, Y., & Rosid, M. A. (2020). Buku Ajar Text Mining. Umsida Press, 1-123.

Fauzi, A. (2022). Penerapan Algoritma Text Mining dan Lexrank dalam Meringkas Teks Secara Otomatis. Bulletin of Data Science, 1(2), 65-72.

Retnawiyati, E., Fatoni, M. M., & Negara, E. S. (2015). Analisis Sentimen pada Data Twitter dengan Menggunakan Text Mining terhadap Suatu Produk. Departemen Teknik Informatika Universitas Bina Darma.

Pradikdo, A. C., & Ristyawan, A. (2018). Model klasifikasi abstrak skripsi menggunakan text mining untuk pengkategorian skripsi sesuai bidang kajian. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 9(2), 1091-1098.

Ling, J., Kencana, I. P. E. N., & Oka, T. B. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3), 92-99.

Lina Auliya, Z. (2019). KLASIFIKASI SENTIMEN TERHADAP APLIKASI SHOPEE DENGAN METODE NAÏVE BAYES CLASSIFIER BERDASARKAN ULASAN DI GOOGLE PLAY (Doctoral dissertation, Universitas Islam Negeri Sultan Syarif Kasim Riau).

Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Support vector machine. Proceeding Indones. Sci. Meeiting Cent. Japan.

Posted

2023-02-27